💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
视线波动衰落分布(fLoS衰落分布):统计特征与应用研究
摘要——我们引入了以参数K、k、λ和Ω为特征的视线波动(fLoS)衰落模型。fLoS衰落分布用多元合流超几何函数Ψ2、Φ(n)3和Φ3=Φ(2)3来表示,并涵盖了诸如Nakagami-m、Hoyt、Rice和Rician阴影衰落分布等已知分布作为特例。我们还讨论了一种有效计算fLoS衰落分布的数值方法。值得注意的是,对于正整数k,fLoS衰落分布简化为κ-µ分布的有限混合。此外,我们分析了中断概率和遍历容量,并为后者提出了一种定制的Prony近似方法。数值结果展示了衰落参数的影响,并验证了所提出近似的准确性。此外,我们还展示了所提出的fLoS衰落分布在表征受信道老化影响的无线系统中的应用。
关键词——κ-µ衰落、合流超几何函数、中断概率、信道容量、Prony方法
本文旨在通过提供一种新颖的表征主导波动的方法镜面反射分量,即视线方向分量,使用广义分布。具体而言,我们提出了一种新的波动LoS(fLoS)衰落分布,其中LoS波动为用非中心卡方分布建模。这个fLoS衰减分布包括经典模型,如霍伊特、赖斯、中上、里安影子和混合物κ-µ分布,作为特例。我们的主要贡献是总结如下1:
• 我们引入了一种新的概率密度函数(PDF)以及拟议的fLoS的累积分布(CDF)衰落具有4个参数K、k、λ和Ω。
• 我们提供数值方法来解决衍生问题由于其高计算复杂性,分布是不可避免的。值得注意的是,对于整数k,fLoS衰落分布可以可以表示为κ-µ分布的混合。
• 我们通过引入Prony近似法来推导出中断概率(OP)和遍历容量(EC)各种功能,并计算无线系统的EC。详细文章见第4部分。
一、定义与背景
视线波动衰落分布(Fluctuating Line-of-Sight, fLoS)是一种新型的小尺度衰落模型,旨在表征无线通信中视线(LoS)分量的波动特性。其核心假设是LoS分量服从非中心卡方分布,并通过四个参数(K,k,λ,ΩK,k,λ,Ω)灵活描述信道特性。该模型通过广义分布统一了多种经典衰落模型,包括霍伊特(Hoyt)、莱斯(Rice)、中上(Nakagami-m)、Rician阴影衰落以及混合κ-µ分布,使其成为这些模型的特例。
二、统计特征
-
概率密度函数(PDF)与累积分布函数(CDF)
fLoS模型的PDF和CDF基于多元合流超几何函数(如Ψ2、Φ3(n))构建,具体表达式为:- PDF:描述信号幅度的瞬时分布,涉及参数KK(LoS分量与散射分量的功率比)、kk(形状参数)、λ(非中心参数)和Ω(总功率)。
- CDF:用于计算信号低于某阈值的概率,支持中断概率(OP)等关键性能指标的推导。
-
数值计算方法
由于解析解的高复杂度,研究提出了基于Prony近似法和混合κ-µ分布分解的数值方法。当kk为整数时,fLoS模型可分解为有限个κ-µ分布的混合形式,显著降低了计算复杂度。
三、与其他衰落模型的联系
fLoS模型通过参数调整可退化为以下经典模型:
- 莱斯衰落:当k=1且LoS分量稳定时。
- Nakagami-m衰落:通过调整形状参数mm(与k相关)实现。
- Rician阴影衰落:结合阴影效应与LoS波动。
这一特性使其成为统一框架,适用于多场景信道建模。
四、应用案例
-
中断概率(OP)与遍历容量(EC)分析
- OP:通过CDF直接计算信号低于接收灵敏度的概率,优化系统可靠性设计。
- EC:利用Prony近似法高效估计信道容量,适用于大规模MIMO和5G/6G系统。
-
信道老化效应建模
在动态环境中(如高速移动或无人机通信),fLoS模型可表征由信道时变特性引起的性能退化,为自适应调制和资源分配提供理论依据。 -
无线系统仿真与优化
- Matlab实现:通过代码验证PDF/CDF的数值计算,并可视化参数(如KK和kk)对衰落深度的影响。
- 多径信道建模:应用于地空通信(如Ku/Ka波段卫星链路),分析直射径与散射径的相互作用。
五、研究进展与挑战
-
最新进展
- 广义模型提出:2024年Nguyen等人首次引入fLoS模型,解决了传统模型对LoS波动描述不足的问题。
- 高效算法开发:Prony近似法与混合分解法提升了计算效率,支持实时性能评估。
- 多场景验证:在毫米波通信、物联网(IoT)密集网络等场景中验证了模型的适用性。
-
未来挑战
- 参数估计优化:需研究更高效的参数估计方法(如最大似然估计)以适应实际信道测量数据。
- 多维扩展:结合空间/频率选择性衰落,构建多维fLoS模型以支持大规模MIMO和超宽带系统。
- 硬件实现:探索模型在FPGA/DSP等硬件平台上的实时仿真技术。
六、结论
fLoS衰落分布通过统一的数学框架和灵活的数值方法,为复杂无线信道建模提供了新思路。其在中断概率、容量分析和动态信道建模中的应用,推动了5G/6G、卫星通信等领域的理论发展。未来需进一步解决实际部署中的参数估计与计算复杂度问题,以实现更广泛的应用。
📚2 运行结果
部分代码:
figure;
semilogy(nn, rawMoment_sim, '-xk', 'LineWidth', 1.5); hold on;
semilogy(nn, rawMoment_ana, '--or', 'LineWidth', 1.5); hold on;
legend('Simulation', 'Analytical Eq. (12)', 'Interpreter', 'latex');
xlabel('$n$', 'Interpreter', 'latex');
ylabel('$\mathbf{E}\{ \gamma^n \}$', 'Interpreter', 'latex');
% =========================================================================
% Eq. (14): Probability Density Function
MGF_snr = @(s) (1-sigma^2*avgsnr*s).^(k-1)./(1-(sigma^2+Omega*d^2)*avgsnr*s).^k...
.* exp(lambda*Omega*d^2*avgsnr*s./(1-(sigma^2+Omega*d^2)*avgsnr*s));
L = max(-1./[sigma^2*avgsnr, (sigma^2+Omega*d^2)*avgsnr])+1/2;
T = 1e3;
f_snr = @(x) integral(@(s) exp(x*s).*MGF_snr(-s), L-1i*T, L+1i*T, 'ArrayValued', true)/(1i*2*pi);
figure;
[y, x] = ksdensity(snr, 'Numpoints', 1e2); x = x(x>0);
histogram(snr, 'NumBins', 100, 'Normalization', 'pdf'); hold on;
plot(x, f_snr(x), '--r', 'LineWidth', 1.5);
% =========================================================================
% Eq. (15): Probability Density Function
F = @(s, x) MGF_snr(-s+avgsnr^(-1)/(sigma^2+Omega*d^2)) .* exp(-x*avgsnr^(-1)/(sigma^2+Omega*d^2));
L = 1/2;
T = 1e3;
f_snr = @(x) integral(@(s) exp(x*s).*F(s, x), L-1i*T, L+1i*T, 'ArrayValued', true)/(1i*2*pi);
figure;
[y, x] = ksdensity(snr, 'Numpoints', 1e2); x = x(x>0);
histogram(snr, 'NumBins', 100, 'Normalization', 'pdf'); hold on;
plot(x, f_snr(x), '--r', 'LineWidth', 1.5);
% =========================================================================
% Eq. (13): Probability Density Function
f_snr = @(x) 1/(sigma^2*avgsnr)/(1+Omega*d^2/sigma^2)^k...
.* exp(-x/(sigma^2*avgsnr)-lambda)...
.* HypergeomePsi2(k, lambda/(1+Omega*d^2/sigma^2),...
Omega*d^2/(sigma^2+Omega*d^2)/(sigma^2*avgsnr), x);
figure;
[y, x] = ksdensity(snr, 'Numpoints', 1e2); x = x(x>0);
histogram(snr, 'NumBins', 100, 'Normalization', 'pdf'); hold on;
plot(x, f_snr(x), '--r', 'LineWidth', 1.5);
% =========================================================================
% Eq. (22): Probability Density Function
if (floor(k) == k) && (k>=1)
f_snr = @(x) exp(-lambda*Omega*d^2/(sigma^2+Omega*d^2))/(avgsnr*sigma^2)/(1+Omega*d^2/sigma^2)^k...
* exp(-x/avgsnr/(sigma^2+Omega*d^2));
sum_j = @(x) 0;
for j = 0:k-1
sum_j = @(x) sum_j(x) + (-1)^j*pochhammer(1-k,j)/factorial(j)...
.* (Omega*d^2/sigma^2/lambda*x/(avgsnr*sigma^2)).^(j/2)...
.* besseli(j, 2/(sigma^2+Omega*d^2)*sqrt(lambda*Omega*d^2*x/avgsnr));
end
f_snr = @(x) f_snr(x) .* sum_j(x);
end
figure;
[y, x] = ksdensity(snr, 'Numpoints', 1e2); x = x(x>0);
histogram(snr, 'NumBins', 100, 'Normalization', 'pdf'); hold on;
plot(x, f_snr(x), '--r', 'LineWidth', 1.5);
% =========================================================================
% Eq. (18): Cumulative Distribution Function
A = (1+Omega*d^2/sigma^2)^(-1);
B = Omega*d^2/(sigma^2+Omega*d^2);
F_snr = @(x) x/(sigma^2*avgsnr)*A^k*exp(-B*lambda)...
.* exp(-A/(sigma^2*avgsnr)*x)...
.* HypergeomePhi3n([1-k, 1],2,[-B, A, A*B*lambda]/(sigma^2*avgsnr), x);
figure;
[y, x] = ecdf(snr);
plot(x, y, 'LineWidth', 1.5); hold on;
xx = linspace(min(x), max(x), 1e3);
plot(xx, F_snr(xx), '--r', 'LineWidth', 1.5);
axis([0 12 min(y) max(y)])
% =========================================================================
% Eq. (24): Cumulative Distribution Function - Kappa-Mu equivalent
F_kmu = @(g, kappa, mu, x) 1 - marcumq(sqrt(2*kappa*mu), sqrt(2*(1+kappa)*mu*x/g), mu);
if (floor(k) == k) && (k>=1)
F_snr = @(x) 0;
for j = 0:(k-1)
C_j = (-1)^j/factorial(j)*(Omega*d^2/sigma^2)^j/(Omega*d^2/sigma^2+1)^(k-1)*pochhammer(1-k, j);
g = (j+1+lambda*Omega*d^2/(sigma^2+Omega*d^2))*(sigma^2+Omega*d^2)*avgsnr;
mu = j+1;
kappa = lambda*Omega*d^2/(sigma^2+Omega*d^2)/(j+1);
%
F_snr = @(x) F_snr(x) + C_j*F_kmu(g, kappa, mu, x);
%
end
end
figure;
[y, x] = ecdf(snr);
plot(x, y, 'LineWidth', 1.5); hold on;
xx = linspace(min(x), max(x), 1e3);
plot(xx, F_snr(xx), '--r', 'LineWidth', 1.5);
axis([0 12 min(y) max(y)])
% =========================================================================
% Outage Probability
F_snr_asymp = @(x) x/(sigma^2*avgsnr)*A^k*exp(-B*lambda);
xdB = -5:2.5:40;
for ix = 1:length(xdB)
%
x = db2pow(xdB(ix));
%
Pout_sim(ix) = mean(x*snr < 1);
Pout_ana(ix) = F_snr(x^(-1));
Pout_asymp(ix) = F_snr_asymp(x^(-1));
end
%
figure;
semilogy(xdB, Pout_sim, 'ok'); hold on;
semilogy(xdB, Pout_ana, '-k', 'LineWidth', 1.5); hold on;
semilogy(xdB, Pout_asymp, '--r', 'LineWidth', 1.5); hold on;
grid on;
xlabel('$\bar{\gamma}/\gamma_{\rm th}$ [dB]');
ylabel('$P_{\rm out}$');
legend('Theoretical', 'Simulated', 'Asymptotic');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取