CosyVoice模型论文笔记

CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens论文读后记录
论文贡献
①我们首次将有监督的语音令牌集成到TTS模型中,增强了零样本语音克隆中的内容一致性和说话人相似性。
②我们提出了一个可扩展的零样本TTS合成系统CosyVoice,它将用于文本到令牌生成的LLM与用于令牌到语音合成的条件流匹配模型相结合,无需额外的音素化器和强制对齐器。
③为了进一步细化生成语音的质量,我们将x向量融入LLM,将语音建模分离为语义、说话人和韵律成分。LLM模型对语义内容和韵律进行建模,而条件流匹配模型捕捉音色和环境信息。我们使用无分类器引导、余弦调度器和屏蔽条件等技术来优化流匹配过程。

### CosyVoice 模型性能指标 CosyVoice 是一种专注于生成自然且情感丰富的语音的模型。该模型具备强大的能力来模仿不同说话人的声音特征,甚至可以从几秒钟的音频样本中克隆特定个体的声音[^2]。 #### 主要性能参数评估: - **音质清晰度**:衡量生成语音的质量和可懂度。通常使用 MOS (Mean Opinion Score) 进行主观评价,在理想情况下应接近人类水平。 - **相似度评分**:用于评估合成语音与目标说话人原始录音之间的相似程度。这可以通过对比声纹特征向量的距离来进行量化分析。 - **情感表达准确性**:测试模型能否根据输入文本正确传达相应的情绪状态。此方面可通过让听众辨认所含情绪并打分的方式获得反馈。 - **响应时间**:指从接收到请求到输出最终结果所需的时间长度。对于实时应用场景而言非常重要,较低延迟意味着更好的用户体验。 ```python # 示例代码展示如何计算MOS得分 def calculate_mos_score(audio_sample): """ 计算给定音频片段的平均意见分数(Mean Opinion Score) 参数: audio_sample (str): 音频文件路径 返回: float: MOS 得分范围0-5, 数值越高表示质量越好 """ import numpy as np from scipy.io.wavfile import read sample_rate, data = read(audio_sample) # 假设有一个函数evaluate_quality()可以根据某些标准给出单个评分 individual_scores = [evaluate_quality(data[i:i+sample_rate]) for i in range(0,len(data),sample_rate)] mos = sum(individual_scores)/len(individual_scores) return round(mos, 2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值