市场上的激光雷达用有哪几种测距方式?各个方式的优缺点是什么

回顾一下激光雷达常见的测距方法。通常有三种:飞行时间法(ToF)、三角测距法和调频连续波(FMCW)。可能还有其他方法,但主流的是这三个。

首先,飞行时间法应该是应用最广泛的,尤其是在自动驾驶和高端测绘中。它的原理是通过测量激光脉冲发射和接收的时间差来计算距离。优点可能是精度高、测距远,但缺点可能有成本高、复杂信号处理,还有可能在强光下性能下降。另外,多雷达之间的干扰问题,也就是串扰,可能也是一个问题。

接下来是三角测距法,这种方法常用于近距离测量,比如机器人避障或消费电子产品。它利用激光点和摄像头之间的三角形关系来确定距离。优点是结构简单、成本低,但测距范围有限,远距离精度不够,而且容易受环境光影响。可能适合室内或短距离应用。

然后是调频连续波(FMCW),这个听起来比较新,可能还在发展阶段。它通过频率调制来测量相位差,从而得到距离和速度。优点是能同时测速,抗干扰能力强,可能在动态环境中表现更好。但技术复杂,成本高,可能目前应用还不广泛,主要还在研发阶段。

比如自动驾驶需要远距离和高精度,所以用ToF;而扫地机器人可能用三角测距法成本更低。

市场上的激光雷达主要采用以下几种测距方式,每种方式都有其独特的优缺点和应用场景:


1. 飞行时间法(Time of Flight, ToF)

原理

通过测量激光脉冲从发射到被目标反射后返回的时间差(Δt),结合光速c

计算距离:2d = c⋅Δt​

应用场景
  • 自动驾驶汽车(如Velodyne、禾赛科技、速腾聚创的雷达)

  • 高精度测绘、工业3D建模

优点
  • 测距范围大:可达200米以上,适合远距离场景。

  • 高精度:毫米级至厘米级精度。

  • 抗干扰性较好:适用于复杂光照环境(但强阳光可能影响)。

缺点
  • 成本高:需高精度时间测量模块(如APD/SPAD探测器)。

  • 信号处理复杂:多回波分离和噪声抑制难度大。

  • 多雷达干扰:多个ToF雷达同时工作时可能产生串扰。


2. 三角测距法(Triangulation)

原理

利用激光发射点、被测物体反射点和摄像头(或接收器)之间的三角形几何关系计算距离。

应用场景
  • 近距离避障(如扫地机器人、无人机)

  • 消费电子(如手机/平板的面部识别)

优点
  • 低成本:结构简单,无需高精度时间测量器件。

  • 近距离精度高:毫米级精度(通常在几米内)。

  • 实时性好:适合快速响应场景。

缺点
  • 测距范围短:有效距离一般小于10米。

  • 环境光敏感:强光或高反光表面易导致误差。

  • 几何限制:基线长度(发射器与接收器间距)影响性能。


3. 调频连续波(Frequency-Modulated Continuous Wave, FMCW)

原理

发射频率连续调制的激光,通过回波与发射信号的频率差计算距离和速度(多普勒效应)。

应用场景
  • 自动驾驶(新兴技术,如Aurora、Aeva的雷达)

  • 高动态目标追踪(需同时测速的场景)

优点
  • 同时测速+测距:通过多普勒效应直接获取目标速度。

  • 抗干扰极强:不受其他雷达或环境光干扰。

  • 高分辨率:相位信息可提升测量精度。

缺点
  • 技术复杂:需高稳定性的激光器和复杂信号处理算法。

  • 成本极高:目前尚未大规模普及。

  • 测距范围受限:目前技术下远距离性能弱于ToF。


4. 相位测距法(Phase-Shift Measurement)

原理

测量发射光与反射光的相位差,结合调制频率计算距离。

应用场景
  • 中短距离工业测量(如建筑测绘)

  • 部分固态激光雷达

优点
  • 高精度:毫米级分辨率。

  • 适合中短距离:性能稳定在几十米内。

缺点
  • 测距范围受限:远距离信号衰减导致误差。

  • 多目标分辨能力弱:复杂场景易混淆。


对比总结

测距方式测距范围精度抗干扰性成本典型应用
ToF长(>200米)较强自动驾驶、测绘
三角测距法短(<10米)高(近距)机器人避障、消费电子
FMCW中长(~150米)极高极强极高未来自动驾驶、动态追踪
相位测距法中(<50米)极高中等工业测量、固态雷达

未来趋势

  • ToF主导现状:因成熟度和远距离性能,仍是主流方案。

  • FMCW潜力大:随着芯片化(硅光技术)和成本下降,可能成为下一代主流。

  • 混合方案:部分雷达结合ToF与FMCW以平衡性能与成本。

根据具体需求(如测距范围、成本、环境复杂度),不同技术将长期共存。


激光雷达(LiDAR)通过发射激光并分析反射信号,能够获取丰富的环境参数,这些参数在自动驾驶、测绘、机器人等领域具有重要应用。以下是激光雷达能够识别的主要参数及其详细说明:


1. 基础参数

(1)距离(Range)
  • 原理:通过测量激光脉冲的飞行时间(ToF)或相位差计算目标与雷达的距离。

  • 应用:障碍物检测、地形测绘、避障。

  • 备注:测距范围受激光功率和探测器灵敏度影响(通常从几米到数百米)。

(2)三维坐标(X, Y, Z)
  • 原理:结合激光束的扫描角度(方位角、俯仰角)和距离,生成目标点的三维空间坐标。

  • 应用:3D环境建模、高精度地图构建、物体定位。


2. 反射特性参数

反射强度(Intensity)
  • 原理:记录激光回波的能量强度,与目标表面材质、粗糙度、入射角度相关(如金属反射强,沥青反射弱)。

  • 应用

    • 材质分类(区分道路、植被、建筑物);

    • 目标识别(如车道线、交通标志);

    • 环境适应性优化(滤除低反射噪声)。


3. 动态参数

径向速度(Radial Velocity)
  • 原理

    • FMCW雷达:通过多普勒效应直接测量目标沿激光束方向的运动速度;

    • ToF雷达:通过连续帧的点云变化间接计算速度。

  • 应用:车辆/行人运动追踪、碰撞预警。


4. 多目标参数

多回波信息(Multiple Returns)
  • 原理:单束激光可能穿透部分障碍物(如树叶)并在不同层反射,记录多次回波的时间和强度。

  • 应用

    • 穿透植被探测地面地形;

    • 复杂场景分层建模(如桥梁下方的结构)。


5. 时间参数

时间戳(Timestamp)
  • 原理:记录每个数据点的精确采集时间(纳秒级精度)。

  • 应用

    • 多传感器同步(如与摄像头、IMU融合);

    • 动态场景的运动轨迹分析。


6. 空间分辨率参数

点云密度(Point Cloud Density)
  • 原理:由激光雷达的扫描频率、线束数量和角分辨率决定(如64线雷达比16线雷达密度更高)。

  • 应用

    • 高精度建模(如建筑BIM);

    • 小目标检测(如路面的坑洞)。


7. 目标几何参数

尺寸、形状与方向
  • 原理:通过点云聚类分析目标的几何特征(如长、宽、高)和朝向。

  • 应用

    • 车辆/行人分类;

    • 障碍物体积估算(如物流机器人避障)。


8. 衍生参数(需算法处理)

(1)语义信息(Semantic Information)
  • 原理:结合点云数据与机器学习算法,识别目标的类别(如车辆、行人、树木)。

  • 应用:自动驾驶决策、智慧城市管理。

(2)表面粗糙度
  • 原理:通过反射强度的分布和波动推测表面纹理。

  • 应用:道路状况评估(如结冰、积水检测)。


技术限制与补充说明

  1. 无法直接获取颜色:需与摄像头融合实现RGB点云。

  2. 材质识别有限:反射强度可区分部分材质,但需结合其他传感器(如红外)。

  3. 动态目标速度限制:径向速度仅反映目标沿激光束方向的分量,需多雷达协同或融合IMU获取全速。


典型应用场景对比

参数自动驾驶地形测绘工业检测
距离 & 3D坐标核心(避障、定位)核心(高程模型)核心(尺寸测量)
反射强度车道线识别地表材质分类焊缝缺陷检测
多回波信息次要核心(穿透植被)次要
径向速度核心(碰撞预警)

未来发展方向

  • 多参数融合:结合反射强度、速度、语义信息提升环境理解能力。

  • FMCW技术普及:直接测速功能将增强动态场景处理能力。

  • 低成本固态雷达:通过MEMS或OPA技术提高点云密度和可靠性。

激光雷达的参数多样性使其成为环境感知的核心传感器,但其数据需与摄像头、毫米波雷达等互补,以实现更全面的场景重建。

 

前言: 说起来,该3D激光扫描测距仪(3D激光雷达)就核心设计原理来而言,应该在激光键盘(https://www.cirmall.com/circuit/2978/detail?3)设计项目之后。现在给大伙讲讲3D扫描测距仪的相关原理和制作细节。请耐心读完,方可吸收其中的精华。 在开始介绍原理前,先给出一些扫描得到的3D模型以及演示视频,给大家一个直观的认识 扫描得到的房间一角: 扫描的我 扫描仪实物 激光三角测距原理这里统一列出他们的参数: 摄像头:VGA画质的USB摄像头,30fps (市面普遍可以购买的型号)。非广角 激光器:50mW 红外一字线激光 808nm 滤光片:10mm直径红外低通滤光片 舵机:HS-322hd 43g标准舵机 本文结构简单介绍了激光雷达产品的现状 : 线状激光进行截面测距原理 3D激光扫描仪的制作考虑 参考文献 简介-激光扫描仪/雷达: 这里所说的激光扫描测距仪的实质就是3D激光雷达。如上面视频中展现的那样,扫描仪可以获取各转角情况下目标物体扫描截面到扫描仪的距离,由于这类数据在可视化后看起来像是由很多小点组成的云团,因此常被称之为:点云(Point Clould)。在获得扫描的点云后,可以在计算机中重现扫描物体/场景的三维信息。 这类设备往往用于如下几个方面: 机器人定位导航 目前机器人的SLAM算法中最理想的设备仍旧是激光雷达(虽然目前可以使用kinect,但他无法再室外使用且精度相对较低)。机器人通过激光扫描得到的所处环境的2D/3D点云,从而可以进行诸如SLAM等定位算法。确定自身在环境当中的位置以及同时创建出所处环境的地图。这也是我制作他的主要目 的之一。 零部件和物体的3D模型重建 地图测绘 现状: 目前市面上单点的激光测距仪已经比较常见,并且价格也相对低廉。但是它只能测量目标上特定点的距离。当然,如果将这类测距仪安装在一个旋转平台上,旋转扫描一周,就变成了2D激光雷达 (LIDAR)。相比激光测距仪,市面上激光雷达产品的价格就要高许多: Hokuyo 2D激光雷达截图: 上图为Hokuyo这家公司生产的2D激光雷达产品,这类产品的售价都是上万元的水平。其昂贵的原因之一在于他们往往采用了高速的光学振镜进行大角度范围(180-270)的激光扫描,并且测距使用了计算发射/反射激光束相位差的手段进行。当然他们的性能也是很强的,一般扫描的频率都在10Hz以上,精度也在几个毫米的级别。 2D激光雷达使用单束点状激光进行扫描,因此只能采集一个截面的距离信息。如果要测量3D的数据 ,就需要使用如下2种方式进行扩充: 采用线状激光器 使用一个2D激光雷达扫描,同时在另一个轴进行旋转。从而扫描出3D信息。 说明: 第一种方式是改变激光器的输出模式,由原先的一个点变成一条线型光。扫描仪通过测量这束线型光在待测目标物体上的反射从而一次性获得一个扫描截面的数据。这样做的好处是扫描速度可以很快 ,精度也比较高。但缺点是由于激光变成了一条线段,其亮度(强度)将随着距离大幅衰减,因此测距范围很有限。对于近距离(<10m)的测距扫描而言,这种方式还是很有效并且极具性价比的,本文介绍的激光雷达也使用这种方式, 对于第二种方式,优点是可以很容易用2D激光雷达进行改造,相对第一种做法来说,他在相同的激光器输出功率下扫描距离更远。当然,由于需要控制额外自由度的转轴,其误差可能较大,同时扫描速度也略低。 这类激光雷达产品目前在各类实验室、工业应用场景中出现的比较多,但对于个人爱好着或者家用 设备中,他们的价格实在是太高了。当然,目前也有了一个替代方案,那就是kinect,不过他的成像 分辨率和测距精度相比激光雷达而言低了不少,同时无法在室外使用。 低成本的方案 造成激光雷达设备高成本的因素为 使用测量激光相位差/传播时间差测距 高速振镜的高成本 矫正算法和矫正人工成本 对于个人DIY而言,第三个因素可以排除,所谓知识就是力量这里就能体现了:-) 对于前2个因素,如果要实现完全一样的精度和性能,那恐怕成本是无法降低的。但是,如果我们对精度、性能要求稍 微降低,那么成本将可以大幅的下降。 首先要明确的是投入的物料成本与能达成的性能之间并非线型比例的关系,当对性能要求下降到一 定水平后,成本将大幅下降。对于第一个因素,可以使用本文将介绍的三角测距方式来进行。而对于 扫锚用振镜,则可以使用普通的电机机构驱动激光器来替代。 本文介绍的低成本3D激光扫描仪实现了如下的成本/性能: 成本:~¥150 测量范围:最远6m 测量精度:(测量距离与实际距离的误差)最远6m出最大80mm误差,近距离(<1m),误差水平在 5mm以内 扫描范围:180度 扫描速度:30 samples/sec (比如以1度角度增量扫描180度,耗时6秒) 对于精
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aFakeProgramer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值