数学分析 不定积分(第8章)

一.不定积分的概念与性质
1.原函数
(1)定义:
在这里插入图片描述

注:f与F的定义域可以不相同,但可知F的定义域不小于f的定义域,即原函数的定义域可以进行延拓

研究原函数的2个重要问题:
①满足何种条件的函数存在原函数?如果存在,是否唯一?
②若已知某个函数的原函数存在,如何求出所有原函数?

注意:原函数的定义不像导数的定义那样具有构造性,即原函数的定义只告诉我们原函数的导数等于某个已知函数f,而没有告诉我们如何求出原函数

(2)原函数的存在性:

定理8.1:若函数f在区间I上连续,则f在I上∃原函数F,即F’(x)=f(x)(x∈I)
由于初等函数在其定义区间上均连续,因此初等函数在其定义区间上必定有原函数,但其原函数不一定仍是初等函数
在这里插入图片描述

定理8.2:设F是f在区间I上的1个原函数,则:
①F+C也是f在I上的原函数,其中C为∀常量函数(此处既把C看作常量函数,又看作该常量函数的函数值,以后统称"C为任意常数")
②f在I上的∀2个原函数间,只可能相差1个常数
在这里插入图片描述

2.不定积分
(1)定义:
在这里插入图片描述

例如: ∫ x 2 d x = 1 3 x 3 + C ∫ s i n ( 2 x ) d x = − 1 2 c o s ( 2 x ) + C ∫ a r c t a n ( x ) d x = x   a r c t a n ( x ) − 1 2 l n ( 1 + x 2 ) + C \int x^2dx=\frac{1}{3}x^3+C\\ \int sin(2x)dx=-\frac{1}{2}cos(2x)+C\\ \int arctan(x)dx=x\,arctan(x)-\frac{1}{2}ln(1+x^2)+C x2dx=31x3+Csin(2x)dx=21cos(2x)+Carctan(x)dx=xarctan(x)21ln(1+x2)+C
注意:1个函数"存在不定积分"和"存在原函数"是等同的说法

(2)几何意义:
在这里插入图片描述
(3)求不定积分:
在这里插入图片描述
3.不定积分的线性运算法则:

定理8.3:若函数f和g在区间I上都存在原函数, k 1 , k 2 k_1,k_2 k1,k2为2个任意常数,则 k 1 f + k 2 g k_1f+k_2g k1f+k2g在I上已存在原函数,切当 k 1 , k 2 k_1,k_2 k1,k2不同时为0时,有: ∫ [ k 1 f ( x ) + k 2 g ( x ) ] d x = k 1 ∫ f ( x ) d x + k 2 ∫ g ( x ) d x \int[k_1f(x)+k_2g(x)]dx=k_1\int f(x)dx+k_2\int g(x)dx [k1f(x)+k2g(x)]dx=k1f(x)dx+k2g(x)dx
在这里插入图片描述
上式的一般形式是: ∫ [ ∑ i = 1 n k i f i ( x ) ] d x = ∑ i = 1 n k i ∫ f i ( x ) d x \int[\displaystyle\sum_{i=1}^{n}{k_if_i(x)}]dx=\displaystyle\sum_{i=1}^{n}{k_i\int f_i(x)dx} [i=1nkifi(x)]dx=i=1nkifi(x)dx

二.基本积分公式:

① ∫ 0 d x = C ② ∫ 1 d x = ∫ d x = x + C ③ ∫ x α d x = x α + 1 α + 1 + C ( α ≠ − 1 , x > 0 ) ④ ∫ 1 x d x = l n ∣ x ∣ + C ( x ≠ 0 ) ⑤ ∫ e x d x = e x + C ⑥ ∫ a x d x = a x l n   a + C ( a > 0 , a ≠ 1 ) ⑦ ∫ c o s ( a x ) d x = 1 a s i n ( a x ) + C ( a ≠ 0 ) ⑧ ∫ s i n ( a x ) d x = − 1 a c o s ( a x ) + C ( a ≠ 0 ) ⑨ ∫ s e c 2 x d x = t a n ( x ) + C ⑩ ∫ c s c 2 x d x = − c o t ( x ) + C ⑪ ∫ s e x ( x ) t a n ( x ) d x = s e c ( x ) + C ⑫ ∫ c s c ( x ) c o t ( x ) d x = − c s c ( x ) + C ⑬ ∫ d x 1 − x 2 = a r c s i n ( x ) + C = − a r c c o s ( x ) + C ⑭ ∫ d x 1 + x 2 = a r c t a n ( x ) + C = − a r c c o t ( x ) + C ①\int 0dx=C\\②\int 1dx=\int dx=x+C\\③\int x^αdx=\frac{x^{α+1}}{α+1}+C(α≠-1,x>0)\\④\int \frac{1}{x}dx=ln|x|+C(x≠0)\\⑤\int e^xdx=e^x+C\\⑥\int a^xdx=\frac{a^x}{ln\,a}+C(a>0,a≠1)\\⑦\int cos(ax)dx=\frac{1}{a}sin(ax)+C(a≠0)\\⑧\int sin(ax)dx=-\frac{1}{a}cos(ax)+C(a≠0)\\⑨\int sec^2xdx=tan(x)+C\\⑩\int csc^2xdx=-cot(x)+C\\⑪\int sex(x)tan(x)dx=sec(x)+C\\⑫\int csc(x)cot(x)dx=-csc(x)+C\\⑬\int \frac{dx}{\sqrt{1-x^2}}=arcsin(x)+C=-arccos(x)+C\\⑭\int \frac{dx}{1+x^2}=arctan(x)+C=-arccot(x)+C 0dx=C1dx=dx=x+Cxαdx=α+1xα+1+C(α=1,x>0)x1dx=lnx+C(x=0)exdx=ex+Caxdx=lnaax+C(a>0,a=1)cos(ax)dx=a1sin(ax)+C(a=0)sin(ax)dx=a1cos(ax)+C(a=0)sec2xdx=tan(x)+Ccsc2xdx=cot(x)+Csex(x)tan(x)dx=sec(x)+Ccsc(x)cot(x)dx=csc(x)+C1x2 dx=arcsin(x)+C=arccos(x)+C1+x2dx=arctan(x)+C=arccot(x)+C
在这里插入图片描述

三.换元积分法与分部积分法
1.第一换元积分法:

定理8.4:设函数f(x)在区间I上有定义,φ(t)在区间J上可导,且 φ ( J ) ⊆ I φ(J)\subseteq I φ(J)I;如果 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C f(x)dx=F(x)+C在I上存在,则: ∫ f ( φ ( t ) ) φ ′ ( t ) d t = F ( φ ( t ) ) + C ( 1 ) \int f(φ(t))φ'(t)dt=F(φ(t))+C\qquad(1) f(φ(t))φ(t)dt=F(φ(t))+C(1)
(1)称为第一换元公式
在这里插入图片描述
在使用(1)时,也可以把它写成如下简便形式: ∫ f ( φ ( t ) ) φ ′ ( t ) d t = ∫ f ( φ ( t ) ) d φ ( t )     = ∫ f ( x ) d x ( 令 x = φ ( t ) ) = F ( x ) + C = F ( φ ( t ) ) + C \int f(φ(t))φ'(t)dt=\int f(φ(t))dφ(t)\\\qquad\qquad\qquad\qquad\qquad\:\:\,=\int f(x)dx(令x=φ(t))\\\qquad\qquad\quad=F(x)+C\\\qquad\qquad\qquad=F(φ(t))+C f(φ(t))φ(t)dt=f(φ(t))dφ(t)=f(x)dx(x=φ(t))=F(x)+C=F(φ(t))+C故第一换元积分法也称凑微分法
在这里插入图片描述

2.第二换元积分法:

定理8.5:设函数f(x)在区间I上有定义,φ(t)在区间J上可导,φ(J)=I,且x=φ(t)在J上存在反函数t=φ-1(x)(x∈I);如果 ∫ f ( x ) d x \int f(x)dx f(x)dx在I上存在,则当 ∫ f ( φ ( t ) ) φ ′ ( t ) d = G ( t ) + C \int f(φ(t))φ'(t)d=G(t)+C f(φ(t))φ(t)d=G(t)+C在J上存在时,在I上有: ∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C ( 2 ) \int f(x)dx=G(φ^{-1}(x))+C\qquad(2) f(x)dx=G(φ1(x))+C(2)
(2)称为第二换元公式
在这里插入图片描述
在这里插入图片描述
注1:定理中" ∫ f ( x ) d x 存 在 \int f(x)dx存在 f(x)dx“是1个必需条件,否则结论可能不成立
在这里插入图片描述
注2:如果将条件" x = φ ( t ) x=φ(t) x=φ(t)在J上存在反函数 t = φ − 1 ( x ) ( x ∈ I ) t=φ^{-1}(x)(x∈I) t=φ1(x)(xI)"换成更强的条件"φ’(t)≠0(x∈J)”,则当 ∫ f ( φ ( t ) ) φ ′ ( t ) d = G ( t ) + C \int f(φ(t))φ'(t)d=G(t)+C f(φ(t))φ(t)d=G(t)+C在J上存在时, ∫ f ( x ) d x \int f(x)dx f(x)dx在I上也存在,且有: ∫ f ( x ) d x = G ( φ − 1 ( x ) ) + C \int f(x)dx=G(φ^{-1}(x))+C f(x)dx=G(φ1(x))+C即注1中的必需条件" ∫ f ( x ) d x 存 在 \int f(x)dx存在 f(x)dx"在上述加强版条件下与" ∫ f ( φ ( t ) ) φ ′ ( t ) d = G ( t ) + C \int f(φ(t))φ'(t)d=G(t)+C f(φ(t))φ(t)d=G(t)+C在J上存在"同真同否,这是因为反函数 t = φ − 1 ( x ) t=φ^{-1}(x) t=φ1(x)在I上必定可导
在这里插入图片描述
在使用(2)时,也可以把它写成如下简便形式: ∫ f ( x ) d x = ∫ f ( φ ( t ) ) φ ′ ( t ) d t ( 令 x = φ ( t ) ) = G ( t ) + C       = G ( φ − 1 ( x ) ) + C ( t = φ − 1 ( x ) ) \int f(x)dx=\int f(φ(t))φ'(t)dt(令x=φ(t))\\=G(t)+C\qquad\qquad\:\,\\\qquad\quad\,\,=G(φ^{-1}(x))+C(t=φ^{-1}(x)) f(x)dx=f(φ(t))φ(t)dt(x=φ(t))=G(t)+C=G(φ1(x))+C(t=φ1(x))
故第二换元积分法也称带入积分法

3.分部积分法

定理8.6:若 u ( x ) , v ( x ) u(x),v(x) u(x),v(x)可导, ∫ u ′ ( x ) v ( x ) d x \int u'(x)v(x)dx u(x)v(x)dx存在,则 ∫ u ( x ) v ′ ( x ) d x \int u(x)v'(x)dx u(x)v(x)dx也存在,并有: ∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x ( 3 ) \int u(x)v'(x)dx=u(x)v(x)-\int u'(x)v(x)dx\qquad(3) u(x)v(x)dx=u(x)v(x)u(x)v(x)dx(3)
在这里插入图片描述
(3)称为分部积分公式,常简写为: ∫ u d v = u v − ∫ v d u ( 4 ) \int udv=uv-\int vdu\qquad(4) udv=uvvdu(4)

四.有理函数和可化为有理函数的不定积分
1.有理函数的不定积分
(1)有理函数:

有理函数指由2个多项式函数的商所表示的函数,其一般形式为: R ( x ) = P ( x ) Q ( x ) = α 0 x n + α 1 x n − 1 + . . . + α n β 0 x m + β 1 x m − 1 + . . . + β m ( 1 ) R(x)=\frac{P(x)}{Q(x)}=\frac{α_0x^n+α_1x^{n-1}+...+α_n}{β_0x^m+β_1x^{m-1}+...+β_m}\qquad(1) R(x)=Q(x)P(x)=β0xm+β1xm1+...+βmα0xn+α1xn1+...+αn(1)其中n,m为非负整数, α i ( i = 0 , 1... n ) , β j ( j = 0 , 1... m ) α_i(i=0,1...n),β_j(j=0,1...m) αi(i=0,1...n),βj(j=0,1...m)都是常数,且 α 0 ≠ 0 , β 0 ≠ 0 α_0≠0,β_0≠0 α0=0,β0=0
若m>n,称其为真分式;若m≤n,称其为假分式
由多项式除法可知:假分式总能化成1个多项式和1个真分式的和;由于多项式的不定积分容易求得,故只需研究真分式的不定积分,故设(1)为1有理真分式

(2)求有理函数的不定积分:

部分分式分解:
在这里插入图片描述
在这里插入图片描述
实例:
在这里插入图片描述
在这里插入图片描述

完成不定积分的计算:
在这里插入图片描述
在这里插入图片描述
实例:
在这里插入图片描述
在这里插入图片描述

2.三角函数有理式的不定积分:

化简sin(x)与cos()x的有理式:在这里插入图片描述
注意:虽然这里的变换 t = t a n x 2 t=tan\frac{x}{2} t=tan2x对三角函数有理式的不定积分总是有效的,但不一定总是简便的

化简 s i n 2 ( x ) , c o s 2 ( x ) , s i n ( x ) c o s ( x ) sin^2(x),cos^2(x),sin(x)cos(x) sin2(x),cos2(x),sin(x)cos(x)的有理式:往往采用变换 t = t a n ( x ) t=tan(x) t=tan(x)较为简便

3.某些无理根式的不定积分:

∫ R ( x , a x + b c x + d n ) d x ( a d − b c ≠ 0 ) \int R(x,\sqrt[n]{\frac{ax+b}{cx+d}})dx(ad-bc≠0) R(x,ncx+dax+b )dx(adbc=0)型不定积分:
在这里插入图片描述
实例:
在这里插入图片描述
在这里插入图片描述

∫ R ( x , a x 2 + b x + c ) d x ( a > 0 时 b 2 − 4 a c ≠ 0 , a < 0 时 b 2 − 4 a c > 0 ) \int R(x,\sqrt{ax^2+bx+c})dx(a>0时b^2-4ac≠0,a<0时b^2-4ac>0) R(x,ax2+bx+c )dx(a>0b24ac=0,a<0b24ac>0)型不定积分
①方法1:
在这里插入图片描述
②方法2:
在这里插入图片描述
实例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注1:可以证明: a r c t a n x 2 − 2 x − 3 − x 3 = a r c t a n x 2 − 2 x − 3 3 ( x + 1 ) − Π 3 arctan\frac{\sqrt{x^2-2x-3}-x}{\sqrt3}=arctan\frac{\sqrt{x^2-2x-3}}{\sqrt3(x+1)}-\frac{Π}{3} arctan3 x22x3 x=arctan3 (x+1)x22x3 3Π故2种解法得到的结果是一致的
注2:在解法二中,显然令 x 2 − 2 x − 3 = x + t \sqrt{x^2-2x-3}=x+t x22x3 =x+t也有相同的效果
注3:相比之下,解法二优于解法一,因为解法二能直接将函数化为有理函数,而解法一需要3次换元

4.积不出来的初等函数:

“求不定积分"通常是指用初等函数的形式把这个不定积分表示出来;在该意义下,但所有初等函数的不定积分都能用初等函数表示,如: ∫ e ± x 2 d x , ∫ d x l n   x , ∫ s i n   x x d x , ∫ 1 − k 2 s i n 2 x d x ( 0 < k 2 < 1 ) \int e^{±x^2}dx,\int\frac{dx}{ln\,x},\int\frac{sin\,x}{x}dx,\int\sqrt{1-k^2sin^2x}dx(0<k^2<1) e±x2dx,lnxdx,xsinxdx,1k2sin2x dx(0<k2<1)即这些初等函数的原函数不是初等函数(由刘维尔(Liouville)于1835年证明),称这些不定积分"积不出来”

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值