数据分析 时间序列分析 AR模型

一.概念

具有如下结构的模型称为p阶自回归模型(Auto Regression Model of order p;AR Model of order p),记为 A R ( p ) AR(p) AR(p): x t = φ 0 + φ 1 x t − 1 + φ 2 x t − 2 + . . . + φ p x t − p + ε t s . t . { φ p ≠ 0   ① E ( ε t ) = 0 , D ( ε t ) = σ ε 2 , γ ( ε t , ε s ) = E ( ε t ε s ) = 0   ( s ≠ t )   ② C o v ( x s , ε t ) = 0   ( ∀ s < t )   ③ x_t=φ_0+φ_1x_{t-1}+φ_2x_{t-2}+...+φ_px_{t-p}+ε_t\\\qquad\qquad\qquad\quad s.t.\begin{cases}φ_p≠0\,①\\E(ε_t)=0,D(ε_t)=σ_ε^2,γ(ε_t,ε_s)=E(ε_tε_s)=0\,(s≠t)\,②\\Cov(x_s,ε_t)=0\,(∀s<t)\,③\end{cases} xt=φ0+φ1xt1+φ2xt2+...+φpxtp+εts.t.φp=0E(εt)=0,D(εt)=σε2,γ(εt,εs)=E(εtεs)=0(s=t)Cov(xs,εt)=0(s<t)其中条件 ① ① 保证模型的阶数为 p p p;条件 ② ② 说明随机干扰序列 { ε t } \{ε_t\} { εt}为具有0均值的白噪声序列;条件 ③ ③ 说明当期的随机干扰与过去的序列值无关.特别地,当 φ 0 = 0 φ_0=0 φ0=0时,称其为中心化 A R ( p ) AR(p) AR(p)模型.当序列 { x t } \{x_t\} { xt}为非中心化 A R ( p ) AR(p) AR(p)序列 ( ( ( φ 0 ≠ 0 ) φ_0≠0) φ0=0)时,则可通过下述变换转化为中心化 A R ( p ) AR(p) AR(p)序列 y t = x t − μ μ = φ 0 1 − φ 1 − . . . − φ p y_t=x_t-μ\\μ=\frac{φ_0}{1-φ_1-...-φ_p} yt=xtμμ=1φ1...φpφ0则称该变换为中心化变换, { y t } \{y_t\} { yt} { x t } \{x_t\} { xt}中心化序列.中心化变换对序列值间的关系没有任何影响,因此分析序列值间的关系时只需对相应的中心化 A R ( p ) AR(p) AR(p)序列进行分析.通过引进延迟算子,可将中心化 A R ( p ) AR(p) AR(p)模型简记为 φ ( B ) x t = ε t φ(B)x_t=ε_t φ(B)xt=εt其中 φ ( B ) φ(B) φ(B)称为自回归系数多项式,有 φ ( B ) = 1 − φ 1 B − φ 2 B 2 − . . . − φ p B p φ(B)=1-φ_1B-φ_2B^2-...-φ_pB^p φ(B)=1φ1Bφ2B2...φpBp

二. A R AR AR模型的平稳性

AR模型是常用的平稳序列的拟合模型之一,但并非所有AR模型都是平稳的

1.图示判别法:

从模型生成1个时间序列,模型与序列的平稳性应相同.再绘制出该序列的时序图,从而将对模型平稳性的检验转换为对时间序列平稳性的时序图检验.这种
方法比较直观,但也比较粗糙

2.特征根判别法:

p p p A R AR AR模型为 x t = φ 1 x t − 1 + φ 2 x t − 2 + . . . + φ p x t − p + ε t x_t=φ_1x_{t-1}+φ_2x_{t-2}+...+φ_px_{t-p}+ε_t xt=φ1xt1+φ2xt2+...+φpxtp+εt可转换为 x t − φ 1 x t − 1 − φ 2 x t − 2 − . . . − φ p x t − p = ε t x_t-φ_1x_{t-1}-φ_2x_{t-2}-...-φ_px_{t-p}=ε_t xtφ1xt1φ2xt2...φpxtp=εt则对应的特征方程为 λ p − φ 1 λ p − 1 − φ 2 λ p − 2 − . . . − φ p = 0 λ^p-φ_1λ^{p-1}-φ_2λ^{p-2}-...-φ_p=0 λpφ1λp1φ2λp2...φp=0由于特征方程为 p p p次多项式,故该方程在复数域内必有 p p p个特征根,记为 λ i   ( i = 1 , 2... p ) λ_i\,(i=1,2...p) λi(i=1,2...p). p p p A R AR AR模型平稳的充要条件是其 p p p个特征根都落在单位圆内.由于特征根与自回归系数多项式的根互为倒数,该条件等价于自回归系数多项式的根都落在单位圆外

3.平稳域判别法:

A R ( p ) AR(p) AR(p)模型的参数向量为 φ = ( φ 1 , φ 2 . . . φ p ) ′ φ=(φ_1,φ_2...φ_p)' φ=(φ1,φ2...φp).将使特征根都落在单位圆内的参数向量构成的集合称为 A R ( p ) AR(p) AR(p)模型的平稳域.从而判断模型是否平稳就相当于判断模型的参数向量是否落在平稳域内

A R ( 1 ) AR(1) AR(1)模型为例:模型为 x t = φ 1 x t − 1 + ε t x_t=φ_1x_{t-1}+ε_t xt=φ1xt1+εt相应的特征方程为 λ − φ 1 = 0 λ-φ_1=0 λφ1=0从而特征根为 λ 1 = φ 1 λ_1=φ_1 λ1=φ1.根据特征根判别法, A R ( 1 ) AR(1) AR(1)模型平稳的充要条件是: ∣ λ 1 ∣ < 1 |λ_1|<1 λ1<1从而 A R ( 1 ) AR(1) AR(1)模型的平稳域为 { φ 1   ∣   − 1 < φ 1 < 1 } \{φ_1\,|\,-1<φ_1<1\} { φ11<φ1<1}

再以 A R ( 2 ) AR(2) AR(2)模型为例:模型为 x t = φ 1 x t − 1 + φ 2 x t − 2 + ε t x_t=φ_1x_{t-1}+φ_2x_{t-2}+ε_t xt=φ1xt1+φ2xt2+εt相应的特征方程为 λ 2 −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值