信息与通信的数学基础——第十二章 分离变量法

1. 齐次方程问题

1. 定解问题:弦的自由振动

偏微分方程是线性齐次的、边界条件也是齐次的(双曲线类型)
在这里插入图片描述
流程:
在这里插入图片描述
(1)分离变量
u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),可得 X T ′ ′ − a 2 X ′ ′ T = 0 XT''-a^2X''T=0 XTa2XT=0,令 T ′ ′ a 2 T = X ′ ′ X = − λ \frac{T''}{a^2T}=\frac{X''}{X}=-\lambda a2TT=XX=λ可得:
在这里插入图片描述
(2)求解本征值
特征方程为: r 2 + λ r = 0 r^2+\lambda r=0 r2+λr=0
① 当 λ < 0 , λ = 0 \lambda<0,\lambda =0 λ<0,λ=0时,方程只有零解,不合题意。
② 当 λ > 0 \lambda>0 λ>0
在这里插入图片描述
X ( x ) = C 2 sin ⁡ n π x l X(x)=C_2\sin \frac{n \pi x}{l} X(x)=C2sinlnπx
上解称为满足边界条件的固有解(特征解), l a m b d a lambda lambda称为特征值, sin ⁡ \sin sin函数为特征函数

(3)解出时间函数
λ \lambda λ值带入常微分方程 T ′ ′ + λ a 2 T = 0 T''+\lambda a^2T=0 T+λa2T=0可得:
T ′ ′ + ( n π a l ) 2 T = 0 T ( t ) = A cos ⁡ n π a l t + B sin ⁡ n π a l t T''+(\frac{n\pi a}{l})^2T=0\\ T(t)=A\cos \frac{n\pi a}{l}t+B\sin \frac{n \pi a}{l}t T+(lnπa)2T=0T(t)=Acoslnπat+Bsinlnπat

(4)得到一族解
u ( x , t ) = ( A cos ⁡ n π a l t + B sin ⁡ n π a l t ) × C 2 sin ⁡ n π x l u(x,t)=(A\cos \frac{n\pi a}{l}t+B\sin \frac{n \pi a}{l}t)\times C_2\sin \frac{n \pi x}{l} u(x,t)=(Acoslnπat+Bsinlnπat)×C2sinlnπx

例题1

在这里插入图片描述
(1)分离变量
假设 u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),带入方程可得: X T ′ ′ − a 2 X ′ ′ T = 0 XT''-a^2X''T=0 XTa2XT=0,令 T ′ ′ a 2 T = X ′ ′ X = − λ \frac{T''}{a^2 T}=\frac{X''}{X}=-\lambda a2TT=XX=λ可得:
T ′ ′ + λ a 2 T = 0 X ′ ′ + λ X = 0 T''+\lambda a^2T=0 \\ X''+\lambda X = 0 T+λa2T=0X+λX=0
(2)求解本征值
对于方程 X T ′ ′ − a 2 X ′ ′ T = 0 XT''-a^2X''T=0 XTa2XT=0,当 λ > 0 \lambda>0 λ>0时,方程存在非零解
因此方程的通解为: X ( x ) = C 1 cos ⁡ λ x + C 2 sin ⁡ λ x X(x)=C_1 \cos \sqrt{\lambda}x+C_2 \sin \sqrt{\lambda}x X(x)=C1cosλ x+C2sinλ x,带入初始条件可得:
u ( x , t ) ∣ x = 0 = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u(x,t)|_{x=0}=X(0)T(t)=0 \to X(0)=0 u(x,t)x=0=X(0)T(t)=0X(0)=0
因此: X ( 0 ) = C 1 = 0 X(0)=C_1=0 X(0)=C1=0
∂ u ∂ x ∣ x = l = 0 \frac{\partial u}{\partial x}|_{x=l} =0 xux=l=0
因此: X ′ = ( − C 1 sin ⁡ λ x + C 2 cos ⁡ λ x ) ∣ x = l = C 2 cos ⁡ λ l = 0 X'=(-C_1 \sin \sqrt{\lambda}x+C_2 \cos \sqrt{\lambda}x)|_{x=l}=C_2 \cos \sqrt{\lambda}l=0 X=(C1sinλ x+C2cosλ x)x=l=C2cosλ l=0
λ = ( 2 n + 1 ) 2 π 2 4 l 2 \lambda = \frac{(2n+1)^2 \pi^2}{4l^2} λ=4l2(2n+1)2π2
(3)解出时间函数
λ \lambda λ值带入常微分方程 T ′ ′ + λ a 2 T = 0 T''+\lambda a^2T=0 T+λa2T=0可得:
T ′ ′ + ( 2 n + 1 ) 2 π 2 4 l 2 T = 0 T ( t ) = A cos ⁡ ( 2 n + 1 ) π 2 l t + B sin ⁡ ( 2 n + 1 ) π 2 l t T''+\frac{(2n+1)^2 \pi^2}{4l^2}T=0 \\ T(t)=A\cos \frac{(2n+1) \pi}{2l}t+B\sin \frac{(2n+1) \pi}{2l}t T+4l2(2n+1)2π2T=0T(t)=Acos2l(2n+1)πt+Bsin2l(2n+1)πt

(4)得到一族解
u ( x , t ) = ( A cos ⁡ ( 2 n + 1 ) π 2 l t + B sin ⁡ ( 2 n + 1 ) π 2 l t ) + C 2 cos ⁡ ( 2 n + 1 ) π 2 l x u(x,t)=(A\cos \frac{(2n+1) \pi}{2l}t+B\sin \frac{(2n+1) \pi}{2l}t)+C_2 \cos \frac{(2n+1) \pi}{2l} x u(x,t)=(Acos2l(2n+1)πt+Bsin2l(2n+1)πt)+C2cos2l(2n+1)πx

2. 定解问题:有限长杆上的热传导

在这里插入图片描述
流程
在这里插入图片描述
(1)分离变量
假设 u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),带入方程可得: X T ′ − a 2 X ′ ′ T = 0 XT'-a^2X''T=0 XTa2XT=0,令 T ′ a 2 T = X ′ ′ X = − λ \frac{T'}{a^2 T}=\frac{X''}{X}=-\lambda a2TT=XX=λ可得:
T ′ + λ a 2 T = 0 X ′ ′ + λ X = 0 T'+\lambda a^2T=0 \\ X''+\lambda X = 0 T+λa2T=0X+λX=0
(2)求解本征值
对于方程 X ′ ′ + λ X = 0 X''+\lambda X = 0 X+λX=0,当 λ > 0 \lambda>0 λ>0时,方程存在非零解
因此方程的通解为: X ( x ) = C 1 cos ⁡ λ x + C 2 sin ⁡ λ x X(x)=C_1 \cos \sqrt{\lambda}x+C_2 \sin \sqrt{\lambda}x X(x)=C1cosλ x+C2sinλ x,带入初始条件可得:
u ( x , t ) ∣ x = 0 = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u(x,t)|_{x=0}=X(0)T(t)=0 \to X(0)=0 u(x,t)x=0=X(0)T(t)=0X(0)=0
因此: X ( 0 ) = C 1 = 0 X(0)=C_1=0 X(0)=C1=0
u ( x , t ) ∣ x = l = X ( l ) T ( t ) = 0 → X ( l ) = 0 u(x,t)|_{x=l}=X(l)T(t)=0 \to X(l)=0 u(x,t)x=l=X(l)T(t)=0X(l)=0
因此: X ( l ) = C 1 cos ⁡ λ l + C 2 sin ⁡ λ l = 0 X(l)=C_1 \cos \sqrt{\lambda}l+C_2 \sin \sqrt{\lambda}l=0 X(l)=C1cosλ l+C2sinλ l=0
λ = ( n π l ) 2 \lambda = (\frac{n\pi}{l})^2 λ=(lnπ)2
(3)解出时间函数
λ \lambda λ值带入常微分方程 T ′ + λ a 2 T = 0 T'+\lambda a^2T=0 T+λa2T=0可得:
T ′ + ( n π a l ) 2 = 0 T ( t ) = D e − n 2 π 2 a 2 t l 2 T'+(\frac{n\pi a}{l})^2=0 \\ T(t)=De^{-\frac{n^2 \pi^2 a^2 t}{l^2}} T+(lnπa)2=0T(t)=Del2n2π2a2t

(4)得到一族解
u ( x , t ) = A e − n 2 π 2 a 2 t l 2 sin ⁡ n π a l x u(x,t)=Ae^{-\frac{n^2 \pi^2 a^2 t}{l^2}} \sin \frac{n \pi a}{l}x u(x,t)=Ael2n2π2a2tsinlnπax

齐次方程综合

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值