B站学习卷积神经网络基础

学习卷积神经网络基础

卷积神经网络的介绍按照 卷积神经网络,全连接层,卷积层,池化层进行介绍

卷积神经网络CNN(Convolution Neural Network)

卷积神经网络发展历史

Rumelhart和Hinton等人提出了反向传播(Back Propagation,BP)算法。

LeCun的利用BP算法训练LeNet5网络,标志着CNN的真正面世。(硬件跟不上)

Hinton在他们的Science Paper中首次提出了Deep Learning的概念。

Hinton的学生Alex Krizhevsky在寝室用GPU死磕了一个Deep Learning模型,一举摘下了视觉领域竞赛ILSVRC 2012的桂冠,在百万量级的1mageNet数据集合上,效果大幅度超过传统的方法,从传统的70%多提升到80%多。

全连接层

在这里插入图片描述
BP(back propagation)算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。

实例:利用BP神经网络做车牌数字识别

在这里插入图片描述
在这里插入图片描述

全连接层

将上面的一维数据,作为全连接层进行输入,对数据采用one-hot编码

one-hot编码示例:
在这里插入图片描述
对完整的神经网络进行训练
在这里插入图片描述

卷积层

在这里插入图片描述
进行图像的特征提取。使用滑动窗口进行计算。
在这里插入图片描述
大大减少了所需要的参数。

卷积和的运算步骤
在这里插入图片描述

卷积层与激活函数

在这里插入图片描述

池化层

在这里插入图片描述

反向传播算法误差计算

在这里插入图片描述

交叉熵损失

在这里插入图片描述

权重更新

在这里插入图片描述
优化器让结果更快的进行收敛
在这里插入片描述

学习资源参考B站的学习资料:附网址:https://www.bilibili.com/video/BV1M7411M7D2/?spm_id_from=333.788&vd_source=0ede55cbcf892303e88597a1332c0593

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序小旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值