学习卷积神经网络基础
卷积神经网络的介绍按照 卷积神经网络,全连接层,卷积层,池化层进行介绍
卷积神经网络CNN(Convolution Neural Network)
卷积神经网络发展历史
Rumelhart和Hinton等人提出了反向传播(Back Propagation,BP)算法。
LeCun的利用BP算法训练LeNet5网络,标志着CNN的真正面世。(硬件跟不上)
Hinton在他们的Science Paper中首次提出了Deep Learning的概念。
Hinton的学生Alex Krizhevsky在寝室用GPU死磕了一个Deep Learning模型,一举摘下了视觉领域竞赛ILSVRC 2012的桂冠,在百万量级的1mageNet数据集合上,效果大幅度超过传统的方法,从传统的70%多提升到80%多。
全连接层
BP(back propagation)算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。
实例:利用BP神经网络做车牌数字识别
全连接层
将上面的一维数据,作为全连接层进行输入,对数据采用one-hot编码
one-hot编码示例:
对完整的神经网络进行训练
卷积层
进行图像的特征提取。使用滑动窗口进行计算。
大大减少了所需要的参数。
卷积和的运算步骤
卷积层与激活函数
池化层
反向传播算法误差计算
交叉熵损失
权重更新
优化器让结果更快的进行收敛
学习资源参考B站的学习资料:附网址:https://www.bilibili.com/video/BV1M7411M7D2/?spm_id_from=333.788&vd_source=0ede55cbcf892303e88597a1332c0593