Python Scikit-Learn 高级教程:高级模型
在机器学习中,选择合适的模型是至关重要的。本篇博客将深入介绍 Scikit-Learn 中一些高级模型,包括集成学习方法、核方法、以及深度学习模型。我们将提供详细的代码示例,帮助你理解和应用这些高级模型。
1. 集成学习方法
集成学习通过组合多个弱学习器的预测结果来构建一个强学习器,以提高模型的性能。在 Scikit-Learn 中,有几种常见的集成学习方法,包括随机森林、AdaBoost 和梯度提升。
1.1 随机森林
随机森林是一种基于决策树的集成学习方法,通过构建多个决策树并对它们的预测结果进行平均来提高性能。
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets