强化学习基础和代码实现

Reinforcement learning and Implementation

代码GitHub地址:https://github.com/zhuzhengming/el2805

  • MDP:建模(State space + Action space + Transition probability + Reward)

    求解:Dynamic programming,Value iteration,Policy iteration

  • Q-learning:关键更新公式如下,可以是off-policy也可以是on-policy
    Q n e w ( s , a ) = Q ( s , a ) + α [ r + γ max ⁡ a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q_{new}(s,a) = Q(s,a)+\alpha[r + \gamma \max_{a'}Q(s',a')-Q(s,a)] Qnew(s,a)=Q(s,a)+α[r+γamaxQ(s,a)Q(s,a)]

  • Sarsa:关键更新公式如下,on-policy:
    Q n e w ( s , a ) = Q ( s , a ) + α [ r + γ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q_{new}(s,a) = Q(s,a)+\alpha [r + \gamma Q(s',a')-Q(s,a)] Qnew(s,a)=Q(s,a)+α[r+γQ(s,a)Q(s,a)]
    注:Q-learning和Sarsa的区别在于对更新过程选择的目标Q值,前者选择下一状态的最大Q值,后者根据当前策略选择下一状态的Q值。

  • Sarsa(λ): 引入eligibility traces来调整短期记忆机制

  • Linear function approximators:将价值函数表示用一组线性函数基表示,如傅里叶基
    V ω ( s ) = ω T ϕ ( s ) V_\omega(s) = \omega^T \phi(s) Vω(s)=ωTϕ(s)
    通过随机梯度下降等方法更新参数ω

  • DQN:引入神经网络来非线性近似Q-value,只适用于离散的动作空间。两个网络,在线网络和目标网络,使用半梯度下降方法滞后更新,损失函数定义为:
    L ( θ ) = E s , a , r , s ′ [ ( r + γ max ⁡ a ′ Q ( s ′ , a ′ ; θ c o p y ) − Q ( s , a ; θ ) ) 2 ] L(\theta) = E_{s,a,r,s'}[(r+\gamma \max_{a'} Q(s',a';\theta_{copy})-Q(s,a;\theta))^2] L(θ)=Es,a,r,s[(r+γamaxQ(s,a;θcopy)Q(s,a;θ))2]
    半梯度更新数学表达式:
    θ t + 1 = θ t + α [ r + γ max ⁡ a ′ Q ( s ′ , a ′ ; θ c o p y ) − Q ( s , a ; θ ) ] ∇ θ Q ( s , a ; θ ) \theta_{t+1} = \theta_t + \alpha[r+\gamma \max_{a'}Q(s',a';\theta_{copy}) - Q(s,a;\theta)]\nabla_{\theta}Q(s,a;\theta) θt+1=θt+α[r+γamaxQ(s,a;θcopy)Q(s,a;θ)]θQ(s,a;θ)

  • DDPG: 基于Critic和Actor框架的算法,适用于连续的动作空间,训练框架基于DQN(target network,经验回放)

    Critic:评估当前动作的价值并更新,这部分本质上和DQN网络一致,这里选择的下个状态的Q value是基于actor网络基于下个状态输出的最佳动作,因为Critic网络目的是学习能够准备估计当前策略下的预期回报,从而指导actor进行策略更新。
    Q n e w ( s , a ) = Q ( s , a ) + α [ r + γ Q ′ ( s ′ , μ ′ ( s ′ ) ) − Q ( s , a ) ] Q_{new}(s,a) = Q(s,a) + \alpha [r + \gamma Q'(s',\mu'(s')) - Q(s,a)] Qnew(s,a)=Q(s,a)+α[r+γQ(s,μ(s))Q(s,a)]
    w h e r e μ ′ ( s ′ )  is the optimal action from actor in the state  s ′ where \quad \mu'(s')\text{ is the optimal action from actor in the state } s' whereμ(s) is the optimal action from actor in the state s
    Actor:针对每个状态给出最佳动作,动作空间是连续的且是deterministic的,目的是最大化当前状态下的Q-value。
    J ( θ ) = E s → ρ θ [ r ( s , π θ ( s ) ) ] J(\theta) = E_{s\to \rho_{\theta}}[r(s,\pi_{\theta}(s))] J(θ)=Esρθ[r(s,πθ(s))]
    w h e r e π θ ( s )  is trajectory under policy and state  π θ ( s ) where \quad \pi_{\theta}(s) \text{ is trajectory under policy and state } \pi_{\theta}(s) whereπθ(s) is trajectory under policy and state πθ(s)
    ρ θ  is discounted stationary distribution from the policy \rho_\theta \text{ is discounted stationary distribution from the policy} ρθ is discounted stationary distribution from the policy
    ∇ θ J ( θ ) = E s t → ρ θ [ ∇ a Q ( s , a ) ∣ a = π θ ( s t ) , s = s t ∇ θ π θ ( s ) ∣ s = s t ] \nabla_\theta J(\theta)=E_{s_t\to \rho_\theta}[\nabla_aQ(s,a)|{a=\pi_\theta(s_t),s=s_t}\nabla_\theta \pi_\theta(s)|{s=s_t}] θJ(θ)=Estρθ[aQ(s,a)a=πθ(st),s=stθπθ(s)s=st]
    w h e r e Q is evaluated by critic network where \quad \text{Q is evaluated by critic network} whereQ is evaluated by critic network
    θ = θ + α ∇ θ J ( θ ) \theta = \theta + \alpha \nabla_\theta J(\theta) θ=θ+αθJ(θ)

    Noise model for exploration:
    a t = π θ ( s t ) + n t a_t = \pi_\theta(s_t) + n_t at=πθ(st)+nt
    Ornstein-Uhlenbeck process  n t = μ n t − 1 + ω t − 1 \text{Ornstein-Uhlenbeck process }n_t = \mu n_{t-1} + \omega_{t-1} Ornstein-Uhlenbeck process nt=μnt1+ωt1

  • PPO

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多智能体强化学习代码实现可以基于不同的算法和框架。以下是一些常见的多智能体强化学习代码示例: 1. Nash-Q Learning: Nash-Q Learning是一种基于博弈论的多智能体强化学习算法。可以使用Python编程语言和强化学习库(如TensorFlow或PyTorch)来实现该算法。你需要创建一个矩阵环境,并使用策略迭代的方法来训练智能体。 2. WoLF-PHC: WoLF-PHC(Policy hill-climbing algorithm)是另一种多智能体强化学习算法,它可以通过提供一种自适应的学习速率来实现策略的收敛。同样,你可以使用Python和强化学习库来实现该算法,并创建一个矩阵环境来进行训练。 3. Minimax-Q Learning: Minimax-Q Learning是一种基于博弈论的多智能体强化学习算法,它通过博弈树搜索来进行策略的更新。你可以使用Python和强化学习库来实现该算法,并创建一个矩阵环境来进行训练。 除了以上算法外,还可以基于多智能体的深度强化学习(RL)进行代码实现。在这种情况下,你可以使用深度学习框架(如TensorFlow或PyTorch)来构建神经网络模型,并使用强化学习算法(如Deep Q-Networks或Proximal Policy Optimization)来进行训练。同时,你可能需要进行一些针对多智能体场景的修改和调整。 如果你需要更具体的代码示例实现细节,我建议你参考相关的研究论文和开源项目,如论文《Markov games as a framework for multi-agent reinforcement learning》。在该论文中,作者提供了多智能体强化学习的理论基础和算法框架,并给出了一些代码实例供参考。 请注意,多智能体强化学习是一个复杂而广泛的领域,具体的代码实现取决于你所选择的算法和框架,以及应用场景的特定要求。因此,你可能需要进一步的研究和学习来完成你的具体任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值