多目标优化算法:多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)

本文介绍了多目标人工蜂鸟算法(MOAHA),一种2022年提出的高效多目标优化算法,利用动态消除的拥挤距离维护外部存档。MOAHA在9个测试函数及盘式制动器设计问题上进行了验证,并通过IGD、GD、HV、SP等指标进行了性能评估。提供完整Matlab代码实现。
摘要由CSDN通过智能技术生成

一、算法简介

多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)是2022年提出的一种高效的多目标优化算法,其采用基于拥挤距离的动态消除法( dynamic elimination-based crowding distance ,DECD)维护外部存档。
在这里插入图片描述

MOAHA算法描述如下:

在这里插入图片描述

参考文献:

[1]Weiguo Zhao, Zhenxing Zhang, Seyedali Mirjalili, Liying Wang, Nima Khodadadi, Seyed Mohammad Mirjalili.An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems,Computer Methods in Applied Mechanics and Engineering, 398,2022,

二、算法测试

MOAHA求解9个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行指标评价。部分结果如下:

Poloni:

在这里插入图片描述

Viennet3:

在这里插入图片描述

盘式制动器设计:

在这里插入图片描述

三、完整代码

MOAHA完整Matlab代码联系博主(欢迎添加博客下方博主微信)
文件夹内包含MOAHA求解9个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、Kursawe、Poloni、Viennet2、Viennet3)和1个工程应用(盘式制动器设计)的全部代码(包含IGD、GD、HV、SP四种评价指标),点击main.m即可运行。

MOAHA算法是一种多目标优化算法,它基于粒子优化算法(PSO)和人工蜂群算法(ABC)的思想。下面是一个简单的MOAHA算法的Python代码示例: ```python import numpy as np # 定义目标函数 def objective_function(x): return [x**2, (x-2)**2] # 初始化参数 num_particles = 50 num_iterations = 100 num_objectives = 2 lower_bound = -5 upper_bound = 5 # 初始化粒子位置和速度 particles_position = np.random.uniform(lower_bound, upper_bound, (num_particles, num_objectives)) particles_velocity = np.zeros((num_particles, num_objectives)) # 初始化个体最优解和全局最优解 particles_best_position = particles_position.copy() global_best_position = particles_best_position[np.argmin(objective_function(particles_best_position))] # 开始迭代 for iteration in range(num_iterations): # 更新粒子速度和位置 inertia_weight = 0.7 # 惯性权重 cognitive_weight = 1.5 # 认知权重 social_weight = 1.5 # 社会权重 for i in range(num_particles): r1 = np.random.random() r2 = np.random.random() cognitive_component = cognitive_weight * r1 * (particles_best_position[i] - particles_position[i]) social_component = social_weight * r2 * (global_best_position - particles_position[i]) particles_velocity[i] = inertia_weight * particles_velocity[i] + cognitive_component + social_component particles_position[i] = particles_position[i] + particles_velocity[i] # 限制粒子位置在边界内 particles_position[i] = np.clip(particles_position[i], lower_bound, upper_bound) # 更新个体最优解和全局最优解 for i in range(num_particles): if objective_function(particles_position[i]) < objective_function(particles_best_position[i]): particles_best_position[i] = particles_position[i] global_best_position = particles_best_position[np.argmin(objective_function(particles_best_position))] # 输出最优解 print("最优解:", global_best_position) ``` 这段代码实现了一个简单的MOAHA算法,其中目标函数为一个二维函数,算法通过迭代更新粒子的速度和位置,寻找最优解。你可以根据自己的需求修改目标函数和算法参数。希望对你有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值