多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)

本文介绍了多旅行商问题(MTSP)的概念及其四种主要类型,包括单仓库多旅行商问题(SD-MTSP)和多仓库多旅行商问题(MD-MTSP)等。MTSP是旅行商问题(TSP)的一种扩展形式,旨在寻找一组旅行商访问一系列城市的最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。围绕着各推销员的起始点和终止点来划分,多旅行商问题大致可以分为四种:

一、第一种多旅行商问题

单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。

两个旅行商的SDMTSP

五个旅行商的SDMTSP

二、第二种多旅行商问题

多仓库多旅行商问题(Multi-Depot Multiple Travelling Salesman Problem, MD-MTSP):𝑚个推销员从𝑚座不同的城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后回到各自出发的城市,这种问题模型被称之为MD-MTSP。

两个旅行商的MDMTSP

两个旅行商的MDMTSP

两个旅行商的MDMTSP

两个旅行商的MDMTSP

三个旅行商的MDMTSP

三、第三种多旅行商问题

𝑚个推销员从同一座城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后再返回到不同的𝑚座城市。

四、第四种多旅行商问题

𝑚个推销员从𝑚座不同城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后再返回到同一座城市。

离已知,旅行商问题Traveling Salesman ProblemTSP)是在图论中的经典问题。它假设有若干个城市,并且每两个城市之间的距离都已知。问题的目标是找到一条路径,使得旅行商能够依次访问每个城市,并且最终回到起始城市,同时总路径长度最短。 TSP是一个NP-hard问题,意味着在一般情况下很难找到一个高效的解决算法。目前,对于TSP的求解方法主要有穷举法、贪心算法、动态规划、遗传算法等。 穷举法是一种暴力的解法,它尝试列举出所有可能的路径,并计算每条路径的总长度,最后选择其中最短的路径。这种方法适用于城市数量较少的情况,但随着城市数量的增加,计算量呈指数级增长。 贪心算法是一种局部最优策略,它从一个起始城市开始,每次选择距离最近的下一个城市作为下一个访问目标,直到遍历完所有城市。贪心算法的计算速度较快,但可能得到的结果并不一定是最优解。 动态规划是一种针对TSP的优化算法,通过利用子问题的最优解来构造整体解。它将问题分解为个子问题,并通过递归计算子问题的最优解,最终得到整体的最优解。动态规划的时间复杂度为O(n^2*2^n)。 遗传算法是一种启发式的优化算法,它模拟自然界中的遗传进化过程。通过对路径进行交叉、变异等操作,逐步优化路径长度,最终找到近似最优解。遗传算法能够处理大规模的TSP问题,但结果通常只是近似最优解。 总之,TSP是一个经典的图论问题,已经有人提出了种求解方法。根据问题的规模和对结果要求的不同,可以选择适用的解决算法。然而,由于TSP的复杂性,要找到真正的最优解仍然是一个挑战。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值