动态约束多目标优化(Dynamic Constrained Multiobjective Optimization,DCMO)测试函数DCF1~DCF10的turePF

20 篇文章 19 订阅
8 篇文章 3 订阅
文章关注于动态多目标优化问题(DMOPs),特别是动态约束多目标优化(DCMO)的复杂性,强调了算法需应对目标函数和约束随时间变化的挑战。CEC2023竞赛提出了DCF1至DCF10的测试函数,用于评估算法在处理DCMO时追踪最优解和响应变化的能力。
摘要由CSDN通过智能技术生成

现实生活中,存在许多动态多目标优化问题(Dynamic Multi-objective Optimization Problems,DMOPs),这类问题的目标函数之间相互矛盾,并且目标函数、约束或者参数都可能随着时间的变化而发生变化.这种随时间不断变化的特性,给解决DMOPs带来了挑战,算法不仅要能够追踪到最优解,同时还要求算法能够快速地对发生的变化做出响应。其中,动态约束多目标优化(Dynamic Constrained Multiobjective Optimization,DCMO)是动态多目标优化问题中的一种,其问题较为复杂且求解难度大。Benchmark Problems for CEC2023 Competition onDynamic Constrained Multiobjective Optimization中测试函数信息如下:
在这里插入图片描述

DCF

DCF1~DCF10的turePF如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值