单目标应用:基于麻雀搜索算法SSA的微电网优化调度MATLAB

194 篇文章 20 订阅
112 篇文章 28 订阅
本文探讨了基于改进粒子群算法的微电网多目标优化调度,介绍了麻雀搜索算法(SSA)作为一种新型的群智能优化方法,模拟麻雀觅食行为优化问题。通过Matlab实现的SSA在微电网调度中的应用实例展示了其在降低运行成本和环保方面的效果。
摘要由CSDN通过智能技术生成

一、微网系统运行优化模型

参考文献:

[1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7

二、麻雀搜索算法简介

麻雀搜索算法 (Sparrow Search Algorithm, SSA) 是一种新型的群智能优化算法,于2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。SSA是一种基于模拟麻雀自然食物搜索行为的启发式优化算法。它通过模拟麻雀在自然界寻找食物的过程来优化问题的解空间,具有全局搜索能力和高效率性能。该算法适用于求解与优化相关的问题,例如组合优化问题、约束优化问题、多目标优化问题等。在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。

麻雀搜索算法(提供Matlab代码)

三、SSA求解微电网调度

(1)部分代码

close all;
clear ; 
clc;
global P_load; %电负荷
global WT;%风电
global PV;%光伏
%%
TestProblem=1;
[lb,ub,dim,fobj] = GetFunInfo(TestProblem);
SearchAgents_no=100; % Number of search agents
Max_iteration=1000; % Maximum number of iterations
[Best_score,Xbest,Convergence_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);


%% 画结果图
figure(1)
semilogy(Convergence_curve,'r-','linewidth',2);
legend('SSA');
xlabel('迭代次数')
ylabel('运行成本与环境保护成本之和')

(2)部分结果

四、完整MATLAB代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值