2024最新群智能优化算法:蛇鹫优化算法(Secretary bird optimization algorithm,SBOA)求解23个函数,提供MATLAB代码

一、蛇鹫优化算法

鹭鹰(又名蛇鹫,仅生活在撒哈拉以南地区,少飞行,通过步行捕猎,以昆虫、蛇、两栖类和小型哺乳动物为食,单配偶制,直立可达1.2米,翅展约2.1米,头的枕部有长长的羽毛,尖端为黑色,又被称为“文书鸟”。蛇鹫总是成对或者小群地在草原上游荡,以地面小动物为食。

蛇鹫优化算法(Secretary bird optimization algorithm,SBOA)由 Fu Youfa等人于2024年提出,该算法的灵感来自于蛇鹫在自然环境中的生存行为。

参考文献:

[1]Fu Y, Liu D, Chen J, et al. Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems[J]. Artificial Intelligence Review, 2024, 57(5): 1-102.

二、23个函数介绍

参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码

close all ;
clear
clc
Npop=30;                
Function_name='F7';     % Name of the test function that can be from F1 to F23 ( 
Tmax=300;              
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_fit,Best_pos,Convergence_curve]=SBOA(Npop,Tmax,lb,ub,dim,fobj);
figure('Position',[100 100 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',3)
title('Search space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('SBOA')
saveas(gca,[Function_name '.jpg']);
display(['The best solution is ', num2str(Best_pos)]);
display(['The best fitness value is ', num2str(Best_fit)]);

四、部分结果

五、完整MATLAB代码

### 优化算法中的扰动因子 在优化算法 (Snake Heron Optimization Algorithm, SBOA) 中,扰动因子是一个重要的参数,用于引入随机性和多样性到种群中,防止过早收敛并提高全局搜索能力[^1]。 #### 扰动因子的定义 扰动因子通常表示为 \( \delta \),其取值范围一般设定在一个特定区间内。该因子通过一定的概率机制被应用到个体位置更新过程中,从而改变粒子的速度或位置。具体来说,在每次迭代中,如果满足一定条件,则会按照下述方式调整当前解的位置: \[ X_{i}(t+1)=X_{i}(t)+\delta \cdot r_1 \] 其中,\( X_i(t) \) 表示第 i 个个体在 t 迭代时刻的位置向量;\( r_1 \) 是服从均匀分布 U(0,1) 的随机数。 #### 扰动因子的作用 1. **增强探索能力** 当群体陷入局部最优时,适当增大扰动强度可以帮助跳出局部极值区域,扩大搜索空间,增加找到更优解的机会。 2. **保持种群多样性** 随机性的加入可以有效维持种群内部差异度,避免因过度同质化而导致进化停滞不前的现象发生。 3. **平衡开发与探测关系** 合理设置扰动水平有助于协调算法早期阶段广泛搜寻潜在可行域的需求和后期精细化定位最佳方案之间的矛盾。 ```matlab % MATLAB代码片段展示如何实现扰动操作 function newX = applyPerturbation(X, delta) nVar = size(X, 2); % 获取变量维度 perturbedVector = rand(size(X)) .* delta; % 计算扰动项 newX = X + perturbedVector; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值