数学建模学习(110):大数据类型题目论文的模型编写

本文介绍了如何编写大数据类型的论文模型,涵盖了神经网络模型、特征重要性排序(如XGBoost和随机森林)、特征序列选择(前向选择SFS)、集成学习(如AdaBoost、GBDT、LightGBM和CatBoost)以及模型融合(Stacking法)。通过这些方法,可以优化模型性能,降低特征冗余,提升预测准确性。

声明(先看)

以下的这些模型,是我从部分优秀论文中整理提取出来,并不是把所有的模型都列出来。很多人都不会写论文,因此大家参考一下别人怎么写的相关模型。

我不确保下面的模型查重,如果你想要直接复制到论文中,请注意查重,适当修改文字描述,模型就是这么写(主要针对大数据类型题目,这也是大多数人最喜欢的题目),更多模型可以自行从优秀论文中寻找

神经网络模型

神经网络模型的思想来源于模仿人类大脑思考的方式。神经元是神经系统最基本的结构和功能单位,人类大脑在思考时,神经元会接受外部的刺激,当传入的冲动使神经元的电位超过阈值时,神经元就会从抑制转向兴奋,并将信号向下一个神经元传导。神经网络的思想是通过构造人造神经元的方式模拟这一过程。

实际应用中,常常采用多层神经网络,在多层神经网络模型中,输入层和输出层间可以有多层隐藏层,层与层之间互相连接,信号通过线性变换和激活函数的复杂映射,不断地进行传递。Keras 是一个高层神经网络库。Keras 序列模型可以很容易地拟合回归数据并预测测试数据,Keras 分为两种类型的模型,顺序模型(Sequential)和泛型模型(Model),预测则在用顺序模型。Sequential 通过多个网络层的线性堆叠达到回归目的,具有极好的实用效果。其原理如下图:
在这里插入图片描述

</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值