基于YOLOv10和半监督学习的小麦麦穗检测算法:YOLOv10_ssod
1.引言
观察小麦麦穗数量有助于人为进行小麦产量评估,早期主要采用人工统计的方法,这种方法费时费力,近几年,由于深度学习技术的进步,利用无人机等设备进行视频图像检测的方法已经取得了一定的成绩。
按照深度学习方法主要分为基于单阶段和双阶段的方法,目前最为流行的即单阶段中的YOLO方法,其精度可以满足日常使用需求且计算负担较小,方便部署于边缘设备。
目前开源出来的最先进的YOLO模型已经更新到第十个版本,即YOLOv10。鉴于目前开源的麦穗数据集视角首先且场景单一,限制算法性能,因此博主结合YOLOv10与半监督学习方法,利用开源的已标注好的数据集以及博主自行采集的无人机视角下的麦穗数据集进行训练,使算法具备更强的适应性。
2.数据集
2.1 公共数据集
目前开源的公共数据集如下所示:
数据集名:Global Wheat Head Dataset
下载地址:www.kaggle.com/c/global-wheat-detection
样图如下:
2.2 自制数据集
众所周知,在深度学习领域,一般数据集和应用场景应当是一致的,否则效果会比较差,为了使算法能够在我们自己的场景中表现良好,也为了节约标注成本,博主利用无人机收集了三千多张应用场景下的麦穗稻田图像,且不对其做标注工作。
收集好的样图如下所示: