Leibniz积分法则(Leibniz Integral Rule)也被称为积分的微分法则(Differentiation under the Integral Sign),它是数学中一个用来交换微分运算和积分运算顺序的方法。这个法则允许我们在一定条件下对含有参数的积分表达式进行微分。
Leibniz积分法则的一般形式是:
设函数
f
(
x
,
t
)
f(x,t)
f(x,t) 及其偏导数
∂
f
∂
t
\frac{\partial f}{\partial t}
∂t∂f 对于变量
x
x
x在区间
[
a
(
t
)
,
b
(
t
)
]
[a(t), b(t)]
[a(t),b(t)] 上连续,并且
a
(
t
)
a(t)
a(t)和
b
(
t
)
b(t)
b(t)是可微函数,则对于参数
t
t
t,积分
I
(
t
)
=
∫
a
(
t
)
b
(
t
)
f
(
x
,
t
)
d
x
I(t) = \int_{a(t)}^{b(t)} f(x,t) \, dx
I(t)=∫a(t)b(t)f(x,t)dx
的导数由下面的表达式给出:
d
I
d
t
=
∫
a
(
t
)
b
(
t
)
∂
f
∂
t
d
x
+
f
(
b
(
t
)
,
t
)
d
b
d
t
−
f
(
a
(
t
)
,
t
)
d
a
d
t
\frac{dI}{dt} = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t} \, dx + f(b(t),t) \frac{db}{dt} - f(a(t),t) \frac{da}{dt}
dtdI=∫a(t)b(t)∂t∂fdx+f(b(t),t)dtdb−f(a(t),t)dtda
这个法则表明,积分的导数可以由两个部分组成:一个是积分区间内部的函数
f
(
x
,
t
)
f(x,t)
f(x,t)关于
t
t
t的偏导数的积分,另一个是由积分区间端点
a
(
t
)
a(t)
a(t)和
b
(
t
)
b(t)
b(t)的变化引起的影响。
Leibniz积分法则在物理学、工程学和数学中很有用,因为它能够处理变化的积分界限以及积分内部的变化因素。它在热学、量子力学、以及求解含参数积分方程等问题中都有应用。
下面是一个使用 Leibniz 积分法则的例子:
考虑一个依赖于参数
t
t
t的积分函数:
I
(
t
)
=
∫
0
t
x
2
e
t
x
d
x
I(t) = \int_{0}^{t} x^2 e^{tx} \, dx
I(t)=∫0tx2etxdx
我们希望建立
I
(
t
)
I(t)
I(t)关于
t
t
t 的导数。
按照 Leibniz 积分法则,我们可以计算
I
(
t
)
I(t)
I(t) 的导数,因为积分的上限是变量
t
t
t,而下限是常数 0,所以我们有:
d
I
d
t
=
∫
0
t
∂
∂
t
(
x
2
e
t
x
)
d
x
+
x
2
e
t
x
∣
x
=
t
d
t
d
t
\frac{dI}{dt} = \int_{0}^{t} \frac{\partial}{\partial t}(x^2 e^{tx}) \, dx + x^2 e^{tx} \Bigg|_{x=t} \frac{dt}{dt}
dtdI=∫0t∂t∂(x2etx)dx+x2etx
x=tdtdt
首先,我们求积分内函数对
t
t
t的偏导数:
∂
∂
t
(
x
2
e
t
x
)
=
x
3
e
t
x
\frac{\partial}{\partial t}(x^2 e^{tx}) = x^3 e^{tx}
∂t∂(x2etx)=x3etx
然后,我们将 $x = t $代入到
x
2
e
t
x
x^2 e^{tx}
x2etx:
x
2
e
t
x
∣
x
=
t
=
t
2
e
t
2
x^2 e^{tx} \Bigg|_{x=t} = t^2 e^{t^2}
x2etx
x=t=t2et2
现在我们整合这些结果:
d
I
d
t
=
∫
0
t
x
3
e
t
x
d
x
+
t
2
e
t
2
\frac{dI}{dt} = \int_{0}^{t} x^3 e^{tx} \, dx + t^2 e^{t^2}
dtdI=∫0tx3etxdx+t2et2
最后,我们得到了
I
(
t
)
I(t)
I(t) 关于
t
t
t 的导数表达式。这个表达式包含了一个关于
t
t
t的新积分,以及一个代入了积分上限的附加项。
要注意的是,这里的
d
t
d
t
\frac{dt}{dt}
dtdt 只是为了完整性而写出来,实际上它等于 1,所以我们可以忽略它。
为了得到
d
I
d
t
\frac{dI}{dt}
dtdI 的具体值,你可能需要使用数值积分的方法来计算这个新的积分,因为
x
3
e
t
x
x^3 e^{tx}
x3etx关于
t
t
t的积分可能没有解析解。然而,这个例子展示了 Leibniz 积分法则的核心思想和使用步骤。