莱布尼兹积分规则

Leibniz积分法则(Leibniz Integral Rule)也被称为积分的微分法则(Differentiation under the Integral Sign),它是数学中一个用来交换微分运算和积分运算顺序的方法。这个法则允许我们在一定条件下对含有参数的积分表达式进行微分。
Leibniz积分法则的一般形式是:
设函数 f ( x , t ) f(x,t) f(x,t) 及其偏导数 ∂ f ∂ t \frac{\partial f}{\partial t} tf 对于变量 x x x在区间 [ a ( t ) , b ( t ) ] [a(t), b(t)] [a(t),b(t)] 上连续,并且 a ( t ) a(t) a(t) b ( t ) b(t) b(t)是可微函数,则对于参数 t t t,积分
I ( t ) = ∫ a ( t ) b ( t ) f ( x , t )   d x I(t) = \int_{a(t)}^{b(t)} f(x,t) \, dx I(t)=a(t)b(t)f(x,t)dx
的导数由下面的表达式给出:
d I d t = ∫ a ( t ) b ( t ) ∂ f ∂ t   d x + f ( b ( t ) , t ) d b d t − f ( a ( t ) , t ) d a d t \frac{dI}{dt} = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t} \, dx + f(b(t),t) \frac{db}{dt} - f(a(t),t) \frac{da}{dt} dtdI=a(t)b(t)tfdx+f(b(t),t)dtdbf(a(t),t)dtda
这个法则表明,积分的导数可以由两个部分组成:一个是积分区间内部的函数 f ( x , t ) f(x,t) f(x,t)关于 t t t的偏导数的积分,另一个是由积分区间端点 a ( t ) a(t) a(t) b ( t ) b(t) b(t)的变化引起的影响。
Leibniz积分法则在物理学、工程学和数学中很有用,因为它能够处理变化的积分界限以及积分内部的变化因素。它在热学、量子力学、以及求解含参数积分方程等问题中都有应用。

下面是一个使用 Leibniz 积分法则的例子:
考虑一个依赖于参数 t t t的积分函数:
I ( t ) = ∫ 0 t x 2 e t x   d x I(t) = \int_{0}^{t} x^2 e^{tx} \, dx I(t)=0tx2etxdx
我们希望建立 I ( t ) I(t) I(t)关于 t t t 的导数。
按照 Leibniz 积分法则,我们可以计算 I ( t ) I(t) I(t) 的导数,因为积分的上限是变量 t t t,而下限是常数 0,所以我们有:
d I d t = ∫ 0 t ∂ ∂ t ( x 2 e t x )   d x + x 2 e t x ∣ x = t d t d t \frac{dI}{dt} = \int_{0}^{t} \frac{\partial}{\partial t}(x^2 e^{tx}) \, dx + x^2 e^{tx} \Bigg|_{x=t} \frac{dt}{dt} dtdI=0tt(x2etx)dx+x2etx x=tdtdt
首先,我们求积分内函数对 t t t的偏导数:
∂ ∂ t ( x 2 e t x ) = x 3 e t x \frac{\partial}{\partial t}(x^2 e^{tx}) = x^3 e^{tx} t(x2etx)=x3etx
然后,我们将 $x = t $代入到 x 2 e t x x^2 e^{tx} x2etx:
x 2 e t x ∣ x = t = t 2 e t 2 x^2 e^{tx} \Bigg|_{x=t} = t^2 e^{t^2} x2etx x=t=t2et2
现在我们整合这些结果:
d I d t = ∫ 0 t x 3 e t x   d x + t 2 e t 2 \frac{dI}{dt} = \int_{0}^{t} x^3 e^{tx} \, dx + t^2 e^{t^2} dtdI=0tx3etxdx+t2et2
最后,我们得到了 I ( t ) I(t) I(t) 关于 t t t 的导数表达式。这个表达式包含了一个关于 t t t的新积分,以及一个代入了积分上限的附加项。
要注意的是,这里的 d t d t \frac{dt}{dt} dtdt 只是为了完整性而写出来,实际上它等于 1,所以我们可以忽略它。
为了得到 d I d t \frac{dI}{dt} dtdI 的具体值,你可能需要使用数值积分的方法来计算这个新的积分,因为 x 3 e t x x^3 e^{tx} x3etx关于 t t t的积分可能没有解析解。然而,这个例子展示了 Leibniz 积分法则的核心思想和使用步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值