机器学习—模型评估及优化

多维函数无法绘制,无法通过图像判断其是否具有适用性
分割训练集和测试集,计算测试集的成本函数
正则化
J(w, b) = 1 m [ ∑ i = 1 m L ( f ( x i ) , y i ) ] + λ 2 m [ ∑ i = 1 m ( w j ) 2 ] \frac{1}{m}[ \sum_{i=1}^{m} L(f(x^i),y^i)]+\frac{λ}{2m}[ \sum_{i=1}^{m} (w_{j})^2] m1[i=1mL(f(xi),yi)]+2mλ[i=1m(wj)2]
λ过大:w失去含义和价值
λ过小:过拟合
使用不同的正则化参数,进行交叉验证,尝试找到最佳λ
偏差与方差
高方差:训练集结果良好,但测试集误差过大
·扩大样本
·减少特征数量
·增加学习率
高偏差:训练集和测试集结果相近,但总体误差过大
·添加额外的特征
·添加额外的多项式特征
·减少学习率
学习曲线
训练集误差随着样本增加而上升:样本越少,越容易满足
在这里插入图片描述
神经网络的构建处理
在这里插入图片描述
误差分析
手动查看有问题的样本(全部或者抽样)
找出净影响最大的因素,针对性解决
添加数据
eg:
图像识别,将扭曲旋转的字符图像添加进样本
音频识别:将原本音频和噪音结合后添加进样本
合成数据:在文本识别时,导入新的字体
迁移学习
使用更大数据集的神经网络的隐藏层以及参数,作为当前训练的隐藏层及初始参数
然后逐步优化
误差指标
在这里插入图片描述
精确率:precision T P T P + F P \frac{TP}{TP+FP} TP+FPTP
召回率:recall T P T P + F N \frac{TP}{TP+FN} TP+FNTP
提高阈值:精确率更高,召回率更低
降低阈值:精确率更低,召回率更高
F1 score:自动权衡阈值
F1 score = 1 1 2 ( 1 P + 1 R ) \frac{1}{\frac{1}{2}(\frac{1}{P}+\frac{1}{R}) } 21(P1+R1)1= 2 P R P + R 2\frac{PR}{P+R } 2P+RPR

  • 17
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值