零基础自学深度学习----P1实现mnist手写数字识别

本系列来源于365天深度学习训练营

原作者K同学

一.前期准备

本文代码的环境为 

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

导入所需要用到的包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

设置GPU

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cuda'

 导入数据集

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28。使用torchvison.datasets在线下载数据,我们使用的是mnist数据集。其中train=True表示下载训练集,train=False表示下载测试集。

train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

利用DataLoader将数据按照batch_size划分,并且设置shuffle=True将训练集顺序打乱。

train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

数据可视化

利用squeeze函数把imgs张量降维成28*28的二维数组,可视化训练数据加载器 train_dl 中的前20张图像

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

 

二.构建简单CNN模型 

该模型主要分为两部分:特征提取网路、分类网络。

1.特征提取网络

这部分网络用于从输入的图像中提取有用的特征。它包含了两个卷积层和两个最大池化层。

原始输入图像的尺寸是[1, 28, 28](通道数1,高度28,宽度28)

第一次卷积和池化:

  • 卷积层:使用3x3的卷积核,边缘填充为0(默认),步长为1(默认),所以输出的高度和宽度都会减少2,变为26x26,输出通道数为32,所以此层输出尺寸为[32, 26, 26]。
  • 池化层:使用2x2的池化核,所以高度和宽度都会除以2,变为13x13,输出尺寸为[32, 13, 13]

第二次卷积和池化:

  • 卷积层:同样使用3x3的卷积核,边缘填充为0,步长为1,所以输出的高度和宽度都会减少2,变为11x11,输出通道数为64,所以此层输出尺寸为[64, 11, 11]。
  • 池化层:使用2x2的池化核,所以高度和宽度都会除以2,变为5x5(向下取整),输出尺寸为[64, 5, 5]

2.分类网络

nn.linear用于创建全连接层,这里第一层全连接层输入节点数是1600(因为经过两次卷积和池化后输出得到5*5*64=1600个节点),输出节点数是64;第二层全连接层输入节点数是64,输出节点数就是num_classes也就是10,对应10个分类。 

3.全连接层

 定义forward函数确定数据通过网络的流程

使用F.relu()函数对特征图应用ReLU激活函数,增加非线性。

在进入全连接层之前,利用torch.flatten(x,start_dim=1)将二维的特征图转换为一维的向量。它将5x5x64的三维张量转换为长度为5x5x64 = 1600的一维向量

self.fa1(x)通过第一个全连接层,学习特征之间的关联,利用F.relu()再次应用Relu激活函数,最后通过第二个连接层,输入十分类的结果。        

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

三.训练模型

设定训练模型所需的损失函数、学习率和优化器

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

1.编写训练函数

这个train函数的主要逻辑是遍历整个训练集,对每一批数据进行前向传播、计算损失、反向传播和参数更新,同时记录并计算平均准确率和平均损失。这是神经网络模型训练的标准流程。

1.初始化变量

初始化训练损失和准确率为0

2.遍历训练集

对于dataloader生成的每一批训练数据X和对应的标签y,执行以下操作:

a. 数据迁移:将X和y移动到指定的设备(CPU或GPU)。

b. 前向传播:使用模型model对输入数据X进行预测,得到预测结果pred。

c. 计算损失:利用损失函数loss_fn计算预测结果pred和真实标签y之间的损失loss。

d. 反向传播

  • 使用optimizer.zero_grad()清零模型参数的梯度。
  • 调用loss.backward()计算损失关于模型参数的梯度。
  • 调用optimizer.step()更新模型参数 

 e. 记录准确率和损失:计算当前批次的准确率和损失,并累加到train_acc和train_loss。

3.计算平均准确率和平均损失

在遍历完所有训练数据后,计算整个训练集的平均准确率和平均损失

4.返回结果

函数最终返回平均准确率 和平均损失。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.编写测试函数

测试函数和训练函数大致相同,但是在整个测试过程中,使用torch.no.grad()来禁用梯度计算,以减小内存消耗,因为测试阶段不需要进行参数更新。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

四.正式训练

这段代码是训练神经网络模型的主循环,执行了指定轮数(epochs)的训练和测试,并记录了每个epoch的训练和测试准确率、损失。对于设定的每个epoch,先进行模型的训练,然后进行模型的评估,并将每一轮的结果记录和输出,直到所有的epochs都完成。

1.初始化变量

  • epochs:设定训练的总轮数为5。
  • train_loss,train_acc初始化这些列表,用于存储每个epoch的训练和测试的损失和准确率。

2.训练和测试循环

 a. 模型训练

  • 将模型设置为训练模式(model.train())。
  • 调用前面定义的 train 函数,使用训练数据集 train_dl 训练模型,得到该epoch的训练准确率和损失

 b. 模型评估

  • 将模型设置为评估模式(model.eval())。
  • 调用前面定义的 test 函数,使用测试数据集 test_dl 测试模型,得到该epoch的测试准确率和损失

c. 记录结果

  • 将该epoch的训练和测试准确率、损失分别添加到相应的列表中。

d. 输出日志

  • 使用模板字符串 template 输出当前epoch的训练和测试结果。
epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

 五.结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

六.问题反思

1.如果调整参数使得模型精度更高?

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值