奇偶性
加减乘除绝对值符合奇偶性
负号和奇偶性
负号不影响函数的奇偶性
奇函数与偶函数的加减乘除后的奇偶性
一般地,除了既是奇函数又是偶函数的函数(如:y=0,x∈R)外,中学数学里常见的奇函数与偶函数的加、减、乘、除后的奇偶性,可简单地表示如下:
(1)奇函数±奇函数=奇函数;偶函数±偶函数=偶函数,奇函数±偶函数=非奇非偶函数,偶函数±奇函数=非奇非偶函数;
【注】上面的性质特点可以简单地概括为:“同性”加减,奇偶不变;“异性”加减,非奇非偶。
(2)奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数,偶函数×奇函数=奇函数;
【注】上面的性质特点可以简单地概括为:“同”乘为“偶”,“异”乘为“奇”。
(3)奇函数÷奇函数=奇函数/奇函数=偶函数,偶函数÷偶函数=偶函数/偶函数=偶函数,奇函数÷偶函数=奇函数/偶函数=奇函数,偶函数÷奇函数=偶函数/奇函数=奇函数
【注】上面的性质特点可以简单概括为:“同”除为“偶”,“异”除为“奇”。
绝对值的奇偶性
奇函数的绝对值是偶函数。
偶函数的绝对值是偶函数。
【知识补充】
1、如果奇函数f(x)的定义域中有“0”,则一定有f(0)=0。因此,如果一个奇函数的定义域中有“0”,则这个奇函数的函数图象一定过原点。
2、如果偶函数g(x)的定义域中有“0”,则g(0)不一定为0。因此,如果一个偶函数的定义域中有“0”,则这个偶函数的函数图象不一定过原点。
3、常见的既是奇函数又是偶函数的函数,y=0(定义域关于原点对称)。例:1、y=0,x∈R;2、y=0,x∈(-1,1)等。
【注】高中数学里,“y=0”是唯一的一个“既是奇函数又是偶函数的”函数解析式形式。
4、常见的非奇非偶函数
(1)奇函数与偶函数的和。例:y=x+1,y=x+x^2;
(2)指数函数、对数函数。例:y=a^x(a>0且a≠1),y=lnx,y=lgx。
(3)某些幂函数。例:y=
x
\sqrt{x}
x(注:y=“x的算术平方根”)。
5、复合函数的奇偶性
设复合函数u(x)=f(g(x)),定义域非空且关于原点对称,则有:
(1)f(x)、g(x)都为奇函数时,u(x)=f(g(x))为奇函数。
【注】u(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-u(x)。
(2)f(x)、g(x)都为偶函数时,u(x)=f(g(x))为偶函数。
【注】u(-x)=f(g(-x))=f(g(x))=u(x)。
(3)f(x)为奇函数,g(x)为偶函数时,u(x)=f(g(x))为偶函数。
【注】u(-x)=f(g(-x))=f(g(x))=u(x)。
(4)f(x)为偶函数,g(x)为奇函数时,u(x)=f(g(x))为偶函数。
【注】u(-x)=f(g(-x))=f(-g(x))=f(g(x))=u(x)。
【注】根据上面四种复合函数的奇偶性,可以概括地得到如下结论:只有内外层的所有函数都为奇函数时,复合后的函数才为奇函数。否则,复合后的函数都是偶函数。
奇函数
ln
(
x
+
1
+
x
2
)
\ln(x+\sqrt{1+x^2})
ln(x+1+x2)
证明:
偶函数
ppppppppppppppppppppppppp
变限函数
例题:
判
断
f
(
x
)
=
∫
0
x
e
−
1
2
t
2
d
x
判断\large f(x)=\int_{0}^{x}e^{-\frac{1}{2}t^2}{\mathrm d}x
判断f(x)=∫0xe−21t2dx
的
奇
偶
性
的奇偶性
的奇偶性。
解:
由
f
(
x
)
=
∫
0
x
e
−
1
2
t
2
d
x
f(x)=\int_{0}^{x}e^{-\frac{1}{2}t^2}{\mathrm d}x
f(x)=∫0xe−21t2dx
知
f
(
−
x
)
=
∫
0
−
x
e
−
1
2
t
2
d
x
=
u=-t
∫
0
x
e
−
1
2
u
2
(
−
d
u
)
=
−
∫
0
x
e
−
1
2
t
2
d
t
=
−
f
(
x
)
f(-x)=\int_{0}^{-x}e^{-\frac{1}{2}t^2}{\mathrm d}x\xlongequal{\text{u=-t}}\int_{0}^{x}e^{-\frac{1}{2}u^2}({-\mathrm d}u)=-\int_{0}^{x}e^{-\frac{1}{2}t^2}{\mathrm d}t=-f(x)
f(−x)=∫0−xe−21t2dxu=-t∫0xe−21u2(−du)=−∫0xe−21t2dt=−f(x)
周期性
三角函数
f
(
x
)
=
A
sin
(
ω
x
+
φ
)
+
b
,
\large f(x)=A\sin (\omega x+ \varphi )+b,
f(x)=Asin(ωx+φ)+b,最小正周期
:
T
=
2
π
∣
ω
∣
:\large T=\frac{2\pi}{|\omega|}
:T=∣ω∣2π
二次函数
圆
圆的标准方程:
(
x
−
a
)
²
+
(
y
−
b
)
²
=
r
²
(x-a)²+(y-b)²=r²
(x−a)²+(y−b)²=r²
其中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定。