定积分的一些性质

前置知识:牛顿-莱布尼茨公式

奇偶性

f f f [ − a , a ] ( a > 0 ) [-a,a](a>0) [a,a](a>0)上连续,则

∫ − a a f ( x ) d x = { 2 ∫ 0 a f ( x ) d x , f 为偶函数 0 ,    f 为奇函数 \int_{-a}^af(x)dx=\begin{cases} 2\int_0^af(x)dx,\qquad f为偶函数\\ 0,\qquad\qquad\qquad \ \ f为奇函数 \end{cases} aaf(x)dx={ 20af(x)dx,f为偶函数0,  f为奇函数

证明: 对于 ∫ − a 0 f ( x ) d x \int_{-a}^0f(x)dx a0f(x)dx,令 x = − t x=-t x=t,则

∫ − a 0 f ( x ) d x = ∫ a 0 f ( − t ) d ( − t ) = − ∫ a 0 f ( − t ) d t = ∫ 0 a f ( − t ) d t = ∫ 0 a f ( − x ) d x \int_{-a}^0f(x)dx=\int_a^0f(-t)d(-t)=-\int_a^0f(-t)dt=\int_0^af(-t)dt=\int_0^af(-x)dx a0f(x)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值