前置知识:牛顿-莱布尼茨公式
奇偶性
设 f f f在 [ − a , a ] ( a > 0 ) [-a,a](a>0) [−a,a](a>0)上连续,则
∫ − a a f ( x ) d x = { 2 ∫ 0 a f ( x ) d x , f 为偶函数 0 , f 为奇函数 \int_{-a}^af(x)dx=\begin{cases} 2\int_0^af(x)dx,\qquad f为偶函数\\ 0,\qquad\qquad\qquad \ \ f为奇函数 \end{cases} ∫−aaf(x)dx={ 2∫0af(x)dx,f为偶函数0, f为奇函数
证明: 对于 ∫ − a 0 f ( x ) d x \int_{-a}^0f(x)dx ∫−a0f(x)dx,令 x = − t x=-t x=−t,则
∫ − a 0 f ( x ) d x = ∫ a 0 f ( − t ) d ( − t ) = − ∫ a 0 f ( − t ) d t = ∫ 0 a f ( − t ) d t = ∫ 0 a f ( − x ) d x \int_{-a}^0f(x)dx=\int_a^0f(-t)d(-t)=-\int_a^0f(-t)dt=\int_0^af(-t)dt=\int_0^af(-x)dx ∫−a0f(x)