BERT模型—7.BERT模型在句子分类任务上的微调(对抗训练)

本文详细介绍了如何使用BERT模型在句子分类任务上进行微调,特别是对抗训练的实现。项目基于mrpc数据集,包含训练和验证集,每个样本有同义或不同义的标签。通过转化文本数据并利用InputExample和InputFeatures类,配合训练与评估函数,实现了模型的训练。对抗训练部分代码提供了额外的安全性。测试时,可以在命令行运行代码,可选择是否启用对抗训练。
摘要由CSDN通过智能技术生成



引言

  这一节学习BERT模型如何在句子分类任务上进行微调。项目代码框架如下:
在这里插入图片描述
争取做到每一行代码都有注释!!!

二、项目环境配置

  • python>=3.6
  • torch==1.6.0
  • transformers==3.0.2
  • seqeval==0.0.12

二、数据集介绍

  该项目使用的是mrpc数据集,该数据集由微软发布,判断两个给定句子,是否具有相同的语义,属于句子对的文本二分类任务;有的句子对是同义的,表示为1;有的是不同义的,表示为0。

Train Dev Labels
MRPC 4076 1725 2

  我们

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值