📖标题:Large Language Model Prompting With Episodic Memory
🌐来源:arXiv, 2408.07465
摘要
🔸优化提示对于提高大型语言模型(LLMs)在自然语言处理(NLP)任务中的表现至关重要,特别是在少量样本学习的情况下,其中训练示例直接并入提示中。尽管越来越多的人对使用少量示例优化提示感兴趣,但现有的提示优化方法通常需要大量资源或表现不佳。
🔸在这项工作中,我们提出了一种新颖的提示优化技术——具有情节记忆的提示(POEM),它简单高效,具有强大的泛化能力。我们将提示优化视为强化学习(RL)挑战,并使用情节记忆来归档输入数据的组合、少量示例的排列以及训练期间观察到的奖励。在测试阶段,我们通过选择在情节记忆中与前k个最相似的训练示例中获得最高总奖励的序列来为每个测试查询优化示例序列。
🔸我们的结果表明,POEM在各种文本分类任务中比最近的技术(如TEMPERA和RLPrompt)表现更好,性能提高了5.3%以上。此外,我们的方法适用于更广泛的语言理解任务,并始终优于传统的启发式方法来排序示例。
🛎️文章简介
🔸研究问题:在少样本