阿里:强化学习提升LLM搜索能力

在这里插入图片描述

📖标题:ZEROSEARCH: Incentivize the Search Capability of LLMs without Searching
🌐来源:arXiv, 2505.04588

🌟摘要

🔸有效的信息搜索对于提高大型语言模型(LLM)的推理和生成能力至关重要。最近的研究探索了使用强化学习(RL)通过与现实世界环境中的实时搜索引擎交互来提高LLM的搜索能力。虽然这些方法显示出有希望的结果,但它们面临着两个主要挑战:(1)不受控制的文档质量:搜索引擎返回的文档质量往往是不可预测的,给训练过程带来了噪音和不稳定性。(2)API成本过高:RL培训需要频繁推出,可能涉及数十万次搜索请求,这会导致API大量支出,并严重限制可扩展性。
🔸为了应对这些挑战,我们引入了ZEROSEARCH,这是一个强化学习框架,可以在不与真实搜索引擎交互的情况下激励LLM的搜索能力。我们的方法从轻量级的监督微调开始,将LLM转换为一个检索模块,该模块能够根据查询生成相关和嘈杂的文档。在强化学习训练中,我们采用了一种基于课程的推出策略,该策略会逐步降低生成文档的质量,通过将模型暴露在越来越具有挑战性的检索场景中,逐步激发模型的推理能力。
🔸大量实验表明,ZEROSEARCH使用3B LLM作为检索模块,有效地激励了LLM的搜索能力。值得注意的是,7B检索模块的性能与真实搜索引擎相当,而14B检索模块甚至超过了它。此外,它在各种参数大小的基础和指令调优模型上都有很好的泛化能力,并且与各种RL算法兼容。项目在https://alibaba-nlp.github.io/ZeroSearch/

🛎️文章简介

🔸研究问题:如何在不依赖真实搜索引擎的情况下,提升大语言模型(LLM)的搜索能力?
🔸主要贡献:论文提出了一种名为ZEROSEARCH的强化学习框架,通过模拟搜索引擎来增强LLM的搜索策略,避免了与真实搜索引擎交互带来的成本和复杂性。

📝重点思路

🔸提出了一种强化学习框架,利用LLM模拟搜索引擎,优化其搜索策略。
🔸通过轻量级的监督微调(SFT),将LLM转变为能够生成相关和噪声文档的检索模块。
🔸引入课程学习机制,逐渐增加检索场景的难度,帮助模型掌握更复杂的推理能力。
🔸设计了一种基于F1分数的奖励机制,以平衡精确度和召回率,避免模型奖励黑客行为。
🔸ZEROSEARCH与多种强化学习算法兼容,包括PPO、GRPO和Reinforce++。

🔎分析总结

🔸实验结果表明,ZEROSEARCH在各类数据集上表现优于依赖真实搜索引擎的方法,证明了其有效性。
🔸ZEROSEARCH展示了良好的可扩展性,随着模型参数的增加,性能持续提升。
🔸课程学习机制的引入有效提升了模型的推理能力,使得训练过程更加平稳。
🔸与真实搜索引擎相比,ZEROSEARCH能够更好地控制生成文档的质量,从而改善训练效果。

💡个人观点

论文的核心在于利用LLM生成文档,从而模拟真实搜索引擎来提升搜索能力。

🧩附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值