Poly AI基于亚马逊云科技生成式AI技术创建语音助手

关键字: [innovate2024, Poly AI, Customer Service Conversations, Voice Assistants Enterprise, Generative Ai Models, Voice Cloning Technology, Responsible Ai Practices]

本文字数: 900, 阅读完需: 4 分钟

导读

来自 Poly AI 的 Michael 介绍了该公司如何利用生成式人工智能模型为企业客户创建定制语音助手。他阐述了 Poly AI 在 Amazon SageMaker 上训练模型的方式,以实现语音克隆和零次应用等功能,让企业能够将自身品牌个性融入语音助手。该演讲重点介绍了 Poly AI 的解决方案如何实现个性化的客户服务体验、通过防护栏增强可控性和可解释性,以及通过可调整的语音节奏和语调来满足不同人群的需求。

演讲精华

在这段视频中,来自亚马逊云科技(Amazon Web Services)的Michael采访了Poly AI公司的联合创始人Michael。Poly AI是一家专门为企业客户创建以客户为中心的语音助手的公司。讨论围绕着Poly AI在生成式人工智能(Generative AI)方面的创新方法,以及与亚马逊云科技的合作。

Michael解释说,Poly AI专注于为企业呼叫中心开发专门用于口语对话的语音助手。它们的客户遍布各个行业,包括旅游、酒店、零售、公用事业和金融服务。这些语音AI助手可以处理诸如回答账户管理问题、安排送货和零售环境中的价格匹配等任务。

认识到企业客户对定制化的重要性,Poly AI与每家公司密切合作,创建与其品牌身份相符的独特语音个性。这包括调整语音的语调、说话速度,甚至针对特定人口统计数据,如较老年龄的客户群。

Poly AI已经为使用Amazon Connect的客户部署了解决方案,包括阿姆斯特丹市,它们提供双语英语和荷兰语语音助手,以及美国的一个旅游预订平台。

当被问及训练生成式文本到语音模型的经验时,Michael提到Poly AI的联合创始人在剑桥大学攻读博士学位期间,就这些技术拥有丰富的专业知识。它们与亚马逊云科技SageMaker合作,训练下一代语音克隆和语音合成算法,旨在实现零射手应用,增强企业将品牌个性融入语音克隆过程的能力。

Poly AI专注于企业环境中基于电话的对话,这使它们与众不同,它们认为与亚马逊云科技在SageMaker上加强自身训练具有价值。

Michael询问了Poly AI未来产品的发展方向,Michael表示它们有兴趣探索将其模型作为SaaS应用程序或平台提供的可能性,就像亚马逊云科技Bedrock一样。它们正在积累企业环境中客户服务对话的独特数据集,这在Bedrock的背景下对它们来说可能是一个有趣的发展方向。

与此同时,Poly AI也很高兴成为Bedrock的用户,因为他们经常收到有关这些模型的防护措施和可控性的疑问。他们认为与像亚马逊云科技这样的企业级参与者合作,利用Bedrock的防护措施,具有重大价值。

当被问及在生成模型和语音方面的负责任人工智能实践时,Michael承认Poly AI是一家年轻且不断成长的公司,正在寻求像亚马逊云科技和Anthropic这样的行业领导者的指导。在他们的客户支持电话用例中,他们考虑是否应该预先声明该解决方案是人工智能还是人工智能助手。在没有监管的情况下,他们将这一决定留给企业的舒适程度。

总之,这段视频强调了Poly AI在创建企业客户服务定制语音助手方面的创新方法,他们与亚马逊云科技SageMaker合作训练生成模型,他们对探索SaaS产品和利用亚马逊云科技Bedrock的防护措施的兴趣,以及他们在生成语音模型领域坚持负责任人工智能实践的承诺。

简要总结: 这段视频讨论了Poly AI在使用生成式人工智能开发企业客户服务定制语音助手方面的创新工作。它强调了他们与亚马逊云科技SageMaker合作训练模型,他们对SaaS产品和亚马逊云科技Bedrock的兴趣,以及他们在生成语音模型背景下的负责任人工智能实践方法。

下面是一些演讲现场的精彩瞬间:

Michael介绍了Poly AI公司专门为企业客户服务中心开发基于大型语言模型的语音助手。

9b590446d89656bb81dbd8df9dac991a.png

由于专注于企业服务,Poly AI深知能够根据每个企业的需求进行定制的重要性。

79d47d9596eb3030f63c7b73e32ddec2.png

因此,在部署过程中,该公司与每个企业合作,创建代表企业形象的语音助手,将其连接到不同的业务流程,并调整语气和语速,以适应不同的服务场景和目标人群。

8323a0dfa4b6e4066ca53be2707f51ed.png

Michael分享了该公司与亚马逊 SageMaker 合作开发下一代语音克隆和语音合成算法的经历,旨在增强企业将自身品牌个性融入语音克隆过程的能力。

d0d7049899a53ef8a27d762812e36fa3.png

同时,Poly AI也很高兴成为Bedrock的用户。

3063bba3c34f829d49e4f44a13ca5940.png

2286c9d27005d7f9e077dab8bf8b0932.png

总结

作为生成式人工智能领域的先驱公司,Poly AI正在通过为企业呼叫中心量身定制的前沿语音助理,彻底改变客户服务体验。凭借大型语言模型和语音合成技术的强大功能,Poly AI使跨行业的企业能够通过电话提供个性化、对话式的服务体验。

Poly AI利用其在语音克隆和合成算法方面的专业知识,与亚马逊云科技 SageMaker合作,训练模型,确保与企业流程和品牌形象无缝融合。他们的重点是创建能够准确捕捉所需语气、节奏和个性的语音助理,满足特定人群和客户需求。

Poly AI的独特方法涉及积累大量客户服务对话数据集,使其成为像亚马逊云科技 Bedrock这样平台的宝贵合作伙伴。他们重视负责任的人工智能实践,解决了透明度和可控性方面的问题,同时与行业内其他公司密切合作,制定防护措施和道德指引。

随着生成式人工智能的未来不断展开,Poly AI立于前沿,通过个性化、智能和负责任的语音助理,赋予企业重新定义客户体验的能力,为人机交互开启新纪元。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值