数据挖掘,计算机网络、操作系统刷题笔记50

数据挖掘,计算机网络、操作系统刷题笔记50

2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开
测开的话,你就得学数据库,sql,oracle,尤其sql要学,当然,像很多金融企业、安全机构啥的,他们必须要用oracle数据库
这oracle比sql安全,强大多了,所以你需要学习,最重要的,你要是考网络警察公务员,这玩意你不会就别去报名了,耽误时间!
考网警特招必然要考操作系统,计算机网络,由于备考时间不长,你可能需要速成,我就想办法自学速成了,课程太长没法玩
刷题系列文章
【1】Oracle数据库:刷题错题本,数据库的各种概念
【2】操作系统,计算机网络,数据库刷题笔记2
【3】数据库、计算机网络,操作系统刷题笔记3
【4】数据库、计算机网络,操作系统刷题笔记4
【5】数据库、计算机网络,操作系统刷题笔记5
【6】数据库、计算机网络,操作系统刷题笔记6
【7】数据库、计算机网络,操作系统刷题笔记7
【8】数据库、计算机网络,操作系统刷题笔记8
【9】操作系统,计算机网络,数据库刷题笔记9
【10】操作系统,计算机网络,数据库刷题笔记10
【11】操作系统,计算机网络,数据库刷题笔记11
【12】操作系统,计算机网络,数据库刷题笔记12
【13】操作系统,计算机网络,数据库刷题笔记13
【14】操作系统,计算机网络,数据库刷题笔记14
【15】计算机网络、操作系统刷题笔记15
【16】数据库,计算机网络、操作系统刷题笔记16
【17】数据库,计算机网络、操作系统刷题笔记17
【18】数据库,计算机网络、操作系统刷题笔记18
【19】数据库,计算机网络、操作系统刷题笔记19
【20】数据库,计算机网络、操作系统刷题笔记20
【21】数据库,计算机网络、操作系统刷题笔记21
【22】数据库,计算机网络、操作系统刷题笔记22
【23】数据库,计算机网络、操作系统刷题笔记23
【24】数据库,计算机网络、操作系统刷题笔记24
【25】数据库,计算机网络、操作系统刷题笔记25
【26】数据库,计算机网络、操作系统刷题笔记26
【27】数据库,计算机网络、操作系统刷题笔记27
【28】数据库,计算机网络、操作系统刷题笔记28
【29】数据库,计算机网络、操作系统刷题笔记29
【30】数据库,计算机网络、操作系统刷题笔记30
【31】数据库,计算机网络、操作系统刷题笔记31
【32】数据库,计算机网络、操作系统刷题笔记32
【33】数据库,计算机网络、操作系统刷题笔记33
【34】数据库,计算机网络、操作系统刷题笔记34
【35】数据挖掘,计算机网络、操作系统刷题笔记35
【36】数据挖掘,计算机网络、操作系统刷题笔记36
【37】数据挖掘,计算机网络、操作系统刷题笔记37
【38】数据挖掘,计算机网络、操作系统刷题笔记38
【39】数据挖掘,计算机网络、操作系统刷题笔记39
【40】数据挖掘,计算机网络、操作系统刷题笔记40
【41】数据挖掘,计算机网络、操作系统刷题笔记41
【42】数据挖掘,计算机网络、操作系统刷题笔记42
【43】数据挖掘,计算机网络、操作系统刷题笔记43
【44】数据挖掘,计算机网络、操作系统刷题笔记44
【45】数据挖掘,计算机网络、操作系统刷题笔记45
【46】数据挖掘,计算机网络、操作系统刷题笔记46
【47】数据挖掘,计算机网络、操作系统刷题笔记47
【48】数据挖掘,计算机网络、操作系统刷题笔记48
【49】数据挖掘,计算机网络、操作系统刷题笔记49


数据挖掘分析应用:回归分析

在这里插入图片描述
在这里插入图片描述
怎么拟合更好呢?

那就是loss要小
对未知数据预测的准确性很重要

n个点,n+1阶多项式最好?????????
不一定好,这过拟合了
在这里插入图片描述
hx尽量去与y拟合,误差小就行
在这里插入图片描述
在这里插入图片描述
这好说
对误差函数求导,找到极值点即可
在这里插入图片描述
在这里插入图片描述
梯度是一个地形中,往最高最陡的方向
在这里插入图片描述
步长不可太大哦
在这里插入图片描述
在这里插入图片描述
更新w
在这里插入图片描述
极小值=最小值:凸优化

多极值点出现就需要正则化
加正则化就是要让参数小的选择,不要太大,因为太大影响就会过大
在这里插入图片描述

代码演示线性回归
之前说过了
last_evaluation
number_project
average_monthly_hours
三者正相关

咱看看他们的相关性回归



def regrfunc(features, label):
    df = features[["number_project", "average_montly_hours"]]
    y = features["last_evaluation"]
    # print(df, y)
    from sklearn.linear_model import LinearRegression

    reg_model = LinearRegression()
    reg_model.fit(df.values, y.values)
    y_pred = reg_model.predict(df.values)
    print("coef", reg_model.coef_)
    from sklearn.metrics import mean_squared_error
    print("mse:", mean_squared_error(y.values, y_pred))

if __name__ == '__main__':
    features, label = pre_processing(sl=True, le=True, npr=True, amh=True, wacc=True, pla=True, dep=False, sal=True,
       lower_d=False, ld_n=3)
    # print(features, label)

    # 灌入模型
    # hr_modeling_all_saveDT_SVM(features, label)

    # 回归分析
    regrfunc(features, label)


coef [0.25133773 0.23488103]
mse: 0.8324006384950512

Process finished with exit code 0

这波回归a和b出来了
误差挺大的

def regrfunc(features, label):
    df = features[["number_project", "average_montly_hours"]]
    y = features["last_evaluation"]
    # print(df, y)
    from sklearn.linear_model import LinearRegression, Ridge, Lasso

    reg_model = LinearRegression()
    ridge_model = Ridge(alpha=0.1)  # 参数

    reg_model.fit(df.values, y.values)
    ridge_model.fit(df.values, y.values)
    y_pred = reg_model.predict(df.values)
    y_pred_ridge = ridge_model.predict(df.values)

    print("coef", reg_model.coef_)
    print("coef", ridge_model.coef_)


    from sklearn.metrics import mean_squared_error
    print("reg mse:", mean_squared_error(y.values, y_pred))
    print("ridge mse:", mean_squared_error(y.values, y_pred_ridge))

if __name__ == '__main__':
    features, label = pre_processing(sl=True, le=True, npr=True, amh=True, wacc=True, pla=True, dep=False, sal=True,
       lower_d=False, ld_n=3)
    # print(features, label)

    # 灌入模型
    # hr_modeling_all_saveDT_SVM(features, label)

    # 回归分析
    regrfunc(features, label)

岭回归没啥变化

我看看alpha为0.8时如何
没啥影响

不管

逻辑回归:逻辑斯蒂回归

在线性回归之上,加一个激活层,搞成非线性的概率映射
这样就是逻辑回归

在这里插入图片描述
在这里插入图片描述
这就是中国人人口的增强规律
互联网产品的销量,用户量
先增长,放缓,停止,gg
开始,缩招,裁员,gg

逻辑:01
分类器
在这里插入图片描述
本质仍然是回归
逻辑回归就是有限
在这里插入图片描述
下面的h表达式不同,
在这里插入图片描述
代码走起

# 演示SVM--Random--adaboost
# 模型
def hr_modeling_all_saveDT_SVM(features, label):
    from sklearn.model_selection import train_test_split
    # 切分函数
    #DataFrame
    feature_val = features.values
    label_val = label
    # 特征段
    feature_name = features.columns
    train_data, valid_data, y_train, y_valid = train_test_split(feature_val, label_val, test_size=0.2)  # 20%验证集
    train_data, test_data, y_train, y_test = train_test_split(train_data, y_train, test_size=0.25)  # 25%测试集
    print(len(train_data), len(valid_data), len(test_data))

    # KNN分类
    from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier
    from sklearn.metrics import accuracy_score, recall_score, f1_score  # 模型评价
    from sklearn.naive_bayes import GaussianNB, BernoulliNB  # 高斯,伯努利,都是对特征有严格要求,离散值最好
    from sklearn.tree import DecisionTreeClassifier, export_graphviz  # 决策树
    from io import StringIO
    import pydotplus
    import os
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier  # 随机森林
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.linear_model import LogisticRegression

    os.environ["PATH"] += os.pathsep+r'D:\Program Files\Graphviz\bin'

    models = []  # 申请模型,挨个验证好坏
    knn_clf = KNeighborsClassifier(n_neighbors=3)  # 5类
    bys_clf = GaussianNB()
    bnl_clf = BernoulliNB()
    DT_clf = DecisionTreeClassifier()
    SVC_clf = SVC()
    rdn_clf = RandomForestClassifier()
    adaboost_clf = AdaBoostClassifier(n_estimators=100)
    logi_clf = LogisticRegression()

    # models.append(("KNN", knn_clf))  # 代码一个个模型测--放入的是元祖
    # models.append(("GaussianNB", bys_clf))  # 代码一个个模型测--放入的是元祖
    # models.append(("BernoulliNB", bnl_clf))  # 代码一个个模型测--放入的是元祖
    models.append(("Decision Tree", DT_clf))  # 代码一个个模型测--放入的是元祖
    # models.append(("SVM classifier", SVC_clf))  # 代码一个个模型测--放入的是元祖
    models.append(("Random classifier", rdn_clf))  # 代码一个个模型测--放入的是元祖
    # models.append(("adaboost classifier", adaboost_clf))  # 代码一个个模型测--放入的是元祖
    models.append(("logistic classifier", logi_clf))  # 代码一个个模型测--放入的是元祖

    # 不同的模型,依次验证
    for modelName, model in models:
        print(modelName)
        model.fit(train_data, y_train)  # 指定训练集
        # 又集成化数据集
        data = [(train_data, y_train), (valid_data, y_valid), (test_data, y_test)]
        for i in range(len(data)):
            print(i)
            y_input = data[i][0]
            y_label = data[i][1]  # 输入输出预测
            y_pred = model.predict(y_input)
            print("acc:", accuracy_score(y_label, y_pred))
            print("recall:", recall_score(y_label, y_pred))
            print("F1:", f1_score(y_label, y_pred))
        print("\n")

    # 不考虑存储,你看看这个模型就会输出仨结果

8999 3000 3000
Decision Tree
0
acc: 1.0
recall: 1.0
F1: 1.0
1
acc: 0.9783333333333334
recall: 0.9754768392370572
F1: 0.9565798263193053
2
acc: 0.9766666666666667
recall: 0.9651474530831099
F1: 0.9536423841059601


Random classifier
0
acc: 1.0
recall: 1.0
F1: 1.0
1
acc: 0.9906666666666667
recall: 0.9713896457765667
F1: 0.9807427785419532
2
acc: 0.9896666666666667
recall: 0.9638069705093834
F1: 0.9788972089857044


logistic classifier
0
acc: 0.7884209356595178
recall: 0.3170731707317073
F1: 0.4105263157894737
1
acc: 0.7856666666666666
recall: 0.32561307901907355
F1: 0.4264049955396967
2
acc: 0.7783333333333333
recall: 0.30160857908847183
F1: 0.40358744394618834



Process finished with exit code 0

效果极其差劲
看看调参如何
估计也没啥用的

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


    logi_clf = LogisticRegression(C=1000, tol=1e-10, solver="sag", max_iter=10000)

8999 3000 3000
Decision Tree
0
acc: 1.0
recall: 1.0
F1: 1.0
1
acc: 0.9786666666666667
recall: 0.9623955431754875
F1: 0.9557399723374828
2
acc: 0.975
recall: 0.9648876404494382
F1: 0.94824016563147


Random classifier
0
acc: 1.0
recall: 1.0
F1: 1.0
1
acc: 0.9903333333333333
recall: 0.9623955431754875
F1: 0.9794472005669738
2
acc: 0.987
recall: 0.9592696629213483
F1: 0.9722419928825622


logistic classifier

这次好像已经100%的准确率了
有点牛逼啊!!!!!!!!!!!!!!!!!!!!!!!!!

很牛逼

在这里插入图片描述

ICMP是IP层的一个组成部分,它传递差错报文以及其它需要注意的信息。

在这里插入图片描述

一个广域网和一个局域网相连,且需要进行协议转换,需要的设备是什么。

在这里插入图片描述

作业从后备作业到被调度程序选中的时间称为()。

在这里插入图片描述

在页式存储管理中,当前进程的页表起始地址存放在( )中。

在这里插入图片描述


总结

提示:重要经验:

1)
2)学好oracle,操作系统,计算机网络,即使经济寒冬,整个测开offer绝对不是问题!同时也是你考公网络警察的必经之路。
3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
"Labuladong"是一个著名的算法题解博主,他的刷题笔记非常受欢迎。他的笔记具有以下几个特点: 1. 思路清晰:Labuladong的刷题笔记总是能够很清晰地阐述解题思路。他善于将复杂的问题简化为易于理解的小问题,并通过逐步引入关键概念和方法,帮助读者理解并掌握解题思路。 2. 逻辑严谨:Labuladong的刷题笔记经过深思熟虑,逻辑严谨。他会从问题的定义开始,逐步引入相关的概念和解题思路,循序渐进地解决问题。这种严谨的逻辑结构有助于读者理解和消化算法的核心思想。 3. 举例详细:Labuladong的刷题笔记通常会通过具体的例子来说明解题思路。这种举例的方式不仅能够帮助读者更好地理解解题方法,还可以帮助读者更好地应用这些方法解决其他类似的问题。 4. 知识点整合:Labuladong的刷题笔记不仅仅是一个题解,而是将相关的算法知识点整合起来,构建出一个完整的学习体系。他会引入一些底层的算法原理,将不同的解题方法进行比较和总结。这种整合的方式能够帮助读者更好地理解和掌握算法的本质。 总之,Labuladong的刷题笔记以其思路清晰、逻辑严谨、举例详细和知识点整合等特点,为广大读者提供了一种深入学习和理解算法的有效途径。通过阅读他的刷题笔记并进行实践,读者能够提高解题能力,并在面对各种算法问题时能够找到正确、高效的解决方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰露可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值