Adaptive Graph Completion Based IncompleteMulti-View Clustering(2020)

1.研究现状

为了提高灵活性,人们提出了一些基于加权矩阵分解的IMC方法,其中最具代表性的是多不完全视图聚类(MIC)[23]、在线多视图聚类(OMVC)[24]、双对齐不完全多视图聚类(DAIMC)[25]和单通道不完全多视图聚类(OPIMC)[26],等 。这些方法通常将视图存在和不存在的信息作为一个加权矩阵来联合正则化所有视图的矩阵分解模型。与PMVC和IMG相比,这些基于加权矩阵分解的方法更优越,因为它们可以处理各种不完整的多视图数据。近年来,许多基于图的方法也被提出用于困难的IMC任务[27]–[29]。例如,Wen等人提出了一个基于低秩表示的图和共识表示联合学习框架[27]。Wang等人提出了一种面向扰动的IMC方法,该方法从数据预构建的固定相似图中产生一致性表示[28]。最近,深度学习在许多应用领域取得了令人印象深刻的成就[30]–[34]。由于其在高级表征学习中的优势,人们提出了许多基于深度学习的内模控制方法,例如对抗性内模控制[35]和通过一致生成的对抗性网络(GANs)实现的PMVC[36]。然而,这两种方法仅适用于大量成对样本的情况。

从现有IMC方法的学习模型可以看出,学习所有视图共享的一致性表示或图是最有效的方法之一,然而现有的方法存在以下问题:两个问题:1)忽略缺失视图的信息。2) 这些不完整视图中隐藏的信息不平衡因素没有得到考虑,因为它们平等地对待所有视图。

本文研究内容:具体来说,该方法通过充分挖掘每个视图的视图内信息和从其他视图借用的视图间信息来恢复所有不完整视图的图形。通过这种方式,可以恢复缺失实例和可用实例之间的隐藏连接,从而增强公共表示学习。为了保证所有视图的潜在表示和图的全局最优,我们将图完成和公共表示学

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值