YOLOv5轻量化改进之mobilenetv3,更换mobilenetv3中的注意力机制。

本文介绍了如何将MobileNetV3的注意力机制应用于YOLOv5,以实现轻量化改进。MobileNetV3通过硬件网络架构搜索与NetAdapt算法优化,提高了在移动设备上的性能。在ImageNet分类、目标检测和语义分割任务上,MobileNetV3展现了优越的效率和准确性。文章提供代码示例,详细说明了在YOLOv5中替换不同注意力机制的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、原理

二、代码

三、YOLOv5改进



一、原理

我们提出了基于互补搜索技术和新颖架构设计相结合的下一代mobilenet。MobileNetV3通过硬件网络架构搜索(NAS)和NetAdapt算法的结合来调整到移动电话cpu,然后通过新的架构进步进行改进。本文开始探索自动搜索算法和网络设计如何协同工作,以利用互补的方法提高整体技术水平。通过这个过程,我们创建了两个新的MobileNet模型:MobileNetV3-Large和MobileNetV3-Small,它们分别针对高资源和低资源用例。然后将这些模型应用于目标检测和语义分割任务。针对语义分割(或任何密集像素预测)任务,我们提出了一种新的高效分割解码器:精简空间金字塔池(LR-ASPP)。我们在移动分类、检测和分割方面取得了最新的成果。与MobileNetV2相比,MobileNetV3-Large在ImageNet分类上的准确率提高了3.2%,同时延迟减少了20

### 使用MobileNetV4对YOLOv7进行轻量化改进 #### 轻量化背景介绍 为了提升YOLOv7在移动设备上的效率和性能,可以借鉴MobileNetV4的设计理念和技术特性。MobileNetV4通过引入UIB(Universal Inverted Bottleneck)模块以及优化后的NAS配方,在保持高精度的同时显著降低了计算复杂度[^1]。 #### 修改方案概述 具体来说,可以通过替换YOLOv7中的原有backbone部分为基于MobileNetV4的新架构来达到轻量化的目的。这不仅能够减少模型大小,还能提高推理速度而不明显牺牲检测效果。 #### 实现细节说明 ##### Backbone 替换 首先需要创建一个新的`MobileNetV4.py`文件,该文件定义了整个MobileNetV4网络结构及其特有的组件如UIB层等。接着将此文件集成到YOLOv7项目中作为新的基础特征提取器替代原有的Darknet53或其他backbone结构[^2]。 ```python from models.common import Conv, SPPF import torch.nn as nn class MobileNetV4(nn.Module): def __init__(self, num_classes=80): super(MobileNetV4, self).__init__() # 定义MobileNetV4的具体层次... def forward(self, x): pass # 前向传播逻辑... def get_mobilenet_v4(): model = MobileNetV4() return model ``` ##### C2f 模块调整 对于YOLOv7中的C2f模块,则可以直接采用MobileNetV4里的UIB单元来进行重构。这样做可以在不增加太多额外开销的情况下增强表达能力,从而有助于改善最终的目标检测表现[^3]。 ```python # 在models/yolo.py 中找到对应的C2f类定义位置,并做如下更改: class C2f(UIB): # 继承自MobileNetV4的UIB基类 ... def _make_layer(self, block, planes, blocks, stride=1): layers = [] downsample = None if isinstance(block, UIB): # 如果当前block是指定类型的UIB,则按照特定规则构建layer列表 ... else: raise ValueError('Unsupported Block Type') return nn.Sequential(*layers) ``` ##### 注意力机制融入 除了上述改变外,还可以考虑加入MobileNetV4所独有的Mobile MQA注意力模块至YOLOv7的不同阶段之中。这种做法能有效捕捉图像内的全局上下文信息,进而促进更精准的对象定位与分类任务完成[^4]。 ```python # 同样是在适当的位置添加下面这段代码片段: class MobileMQAAttention(nn.Module): ... def apply_attention_module(module_list, position=-1): """ 将指定位置处插入一个Mobile MQA Attention Module """ module_list.insert(position, MobileMQAAttention()) ``` ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这糖有点苦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值