自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 day 27 装饰器函数

Python装饰器是一种高阶函数,它能在不修改原函数代码的情况下为其添加额外功能。通过@语法糖,装饰器将函数作为参数,并返回一个新的包装函数。装饰器还能处理函数参数和返回值,使用*args和**kwargs实现通用性。

2025-06-07 23:39:06 640

原创 day 26 函数专题

本文介绍了Python函数定义:1. 基本语法包括def关键字、函数名、参数列表、冒号、文档字符串和函数体;2. 参数传递机制区分形参与实参,并说明可变/不可变数据类型的参数处理差异;3. 返回值使用return语句,函数可返回单个值或多个值;4. 变量作用域分为局部变量和全局变量;5. 参数类型详解位置参数、关键字参数、默认参数,以及收集参数的*args和**kwargs用法。

2025-05-30 18:52:06 654

原创 day 25 异常处理

Python异常处理机制提供程序容错能力,通过try-except-else-finally语句结构实现。常见异常类型包括SyntaxError、NameError、TypeError等,各有特定触发场景。异常发生时生成异常对象并打印回溯信息帮助定位问题。

2025-05-30 11:27:51 1145

原创 day 24 元组和OS模块

本文介绍了:1.元组的基本操作;2.scikit-learn中的Pipeline机制;3.可迭代对象的概念;4.os模块的os.walk()的目录遍历方法。

2025-05-29 17:41:54 757

原创 day 23 机器学习管道(pipeline)

本文系统介绍了机器学习中的pipeline概念及其实现方法,阐述了转换器(Transformer)和估计器(Estimator)的区别与功能,详细展示了如何通过sklearn的Pipeline类构建完整机器学习流程。

2025-05-27 23:59:15 1211

原创 day 22 练习——泰坦尼克号幸存者预测

使用Kaggle平台进行泰坦尼克号生存预测的完整流程,包括缺失值填充、特征工程(分箱、标准化、编码)和数据集划分。接着用LightGBM、随机森林和XGBoost三种模型实现与评估,选取XGBoost进行网格搜索与贝叶斯优化调参,最终预测准确率为77.272%,还有较大改进空间。

2025-05-26 20:42:46 595

原创 day 21 常见降维算法

降维技术是数据科学中的关键工具,分为无监督和有监督两类。无监督降维算法如PCA、t-SNE、UMAP等,不依赖标签信息;有监督降维算法如LDA、NCA等,则利用标签信息。

2025-05-19 23:59:10 711

原创 day 20 奇异值SVD分解

奇异值(Singular Value)是矩阵分解中的核心概念,主要用于降维、数据压缩、去噪和推荐系统等应用。代码实例展示了如何使用SVD进行矩阵降维和机器学习中的特征提取。

2025-05-17 12:33:06 911

原创 day 19 特征降维之特征筛选

本文通过代码实例展示了多种特征筛选方法,如方差筛选、皮尔逊相关系数筛选、Lasso筛选、树模型重要性筛选、SHAP重要性筛选和递归特征消除(RFE)。

2025-05-16 14:09:44 800

原创 day 18 通过聚类进行特征工程,得到新特征

文章主要探讨了如何通过聚类分析赋予新特征含义,并详细介绍了聚类流程。

2025-05-16 11:46:33 806

原创 day 17 无监督学习之聚类算法

介绍了常见的聚类算法以及评估指标,并且利用降维对聚类结果进行可视化

2025-05-15 23:57:16 1262

原创 day 16 Numpy数组与Shap值的深入理解

介绍了梯度下降法步骤以及numpy数组的索引方式,对shap值进行了深入理解,解决了因为维度不一致导致绘制shap库报错的问题

2025-05-14 12:29:15 1095

原创 day 15 数据集实操

文章详细描述了一个关于学生辍学与成功预测的数据集实操过程,包括数据导入、探索、预处理、特征工程、模型训练与评估等步骤。通过逻辑回归、随机森林和XGBoost等模型进行基准测试,并采用SMOTE过采样和类别权重调整处理数据不平衡问题。最后,通过网格搜索和贝叶斯优化进行模型调参,并使用SHAP进行模型可解释性分析,揭示了影响学生辍学的主要因素。

2025-05-13 11:57:30 1447

原创 day 14 SHAP可视化

shap库的原理和一些图表

2025-05-07 23:54:36 1033

原创 day 13 不平衡数据集的处理

不平衡数据集的处理方法:数据层面过采样,算法层面修改类别权重和分类阈值

2025-05-06 21:00:59 1046

原创 day 12 三种启发式算法:遗传算法、粒子群算法、退火算法

三种启发式算法:遗传算法、粒子群算法以及模拟退火算法

2025-05-04 16:17:21 1345

原创 day 11 超参数调整

介绍了超参数调整方法,如网格搜索与贝叶斯优化,以及交叉验证的作用

2025-05-03 23:48:35 1223

原创 day 10 机器学习建模与评估

机器学习训练及评估指标

2025-05-02 23:38:10 1281 1

原创 day 9 热力图与子图的绘制

热力图及子图的绘制以及enumerate()函数

2025-04-30 22:31:02 934

原创 day 8 字典、标签编码、连续特征处理

字典学习、标签编码、连续特征的归一化与标准化

2025-04-29 23:18:18 998

原创 day 7 数据集实操练习

数据认知、数据预处理及简单的可视化复习

2025-04-28 23:52:38 1022

原创 day 6 数据可视化

数据初步可视化

2025-04-26 23:25:08 902

原创 day 5

离散特征编码

2025-04-25 23:57:59 1185

原创 day 4

pandas库与缺失值的补全

2025-04-24 12:49:47 1046

原创 day 3

列表操作及循环判断语句的使用

2025-04-22 14:50:31 1124

原创 day 2

字符串操作及比较运算符

2025-04-21 21:41:32 746

原创 day 1

python学习打卡

2025-04-20 23:47:59 1323 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除