- 博客(27)
- 收藏
- 关注
原创 day 27 装饰器函数
Python装饰器是一种高阶函数,它能在不修改原函数代码的情况下为其添加额外功能。通过@语法糖,装饰器将函数作为参数,并返回一个新的包装函数。装饰器还能处理函数参数和返回值,使用*args和**kwargs实现通用性。
2025-06-07 23:39:06
640
原创 day 26 函数专题
本文介绍了Python函数定义:1. 基本语法包括def关键字、函数名、参数列表、冒号、文档字符串和函数体;2. 参数传递机制区分形参与实参,并说明可变/不可变数据类型的参数处理差异;3. 返回值使用return语句,函数可返回单个值或多个值;4. 变量作用域分为局部变量和全局变量;5. 参数类型详解位置参数、关键字参数、默认参数,以及收集参数的*args和**kwargs用法。
2025-05-30 18:52:06
654
原创 day 25 异常处理
Python异常处理机制提供程序容错能力,通过try-except-else-finally语句结构实现。常见异常类型包括SyntaxError、NameError、TypeError等,各有特定触发场景。异常发生时生成异常对象并打印回溯信息帮助定位问题。
2025-05-30 11:27:51
1145
原创 day 24 元组和OS模块
本文介绍了:1.元组的基本操作;2.scikit-learn中的Pipeline机制;3.可迭代对象的概念;4.os模块的os.walk()的目录遍历方法。
2025-05-29 17:41:54
757
原创 day 23 机器学习管道(pipeline)
本文系统介绍了机器学习中的pipeline概念及其实现方法,阐述了转换器(Transformer)和估计器(Estimator)的区别与功能,详细展示了如何通过sklearn的Pipeline类构建完整机器学习流程。
2025-05-27 23:59:15
1211
原创 day 22 练习——泰坦尼克号幸存者预测
使用Kaggle平台进行泰坦尼克号生存预测的完整流程,包括缺失值填充、特征工程(分箱、标准化、编码)和数据集划分。接着用LightGBM、随机森林和XGBoost三种模型实现与评估,选取XGBoost进行网格搜索与贝叶斯优化调参,最终预测准确率为77.272%,还有较大改进空间。
2025-05-26 20:42:46
595
原创 day 21 常见降维算法
降维技术是数据科学中的关键工具,分为无监督和有监督两类。无监督降维算法如PCA、t-SNE、UMAP等,不依赖标签信息;有监督降维算法如LDA、NCA等,则利用标签信息。
2025-05-19 23:59:10
711
原创 day 20 奇异值SVD分解
奇异值(Singular Value)是矩阵分解中的核心概念,主要用于降维、数据压缩、去噪和推荐系统等应用。代码实例展示了如何使用SVD进行矩阵降维和机器学习中的特征提取。
2025-05-17 12:33:06
911
原创 day 19 特征降维之特征筛选
本文通过代码实例展示了多种特征筛选方法,如方差筛选、皮尔逊相关系数筛选、Lasso筛选、树模型重要性筛选、SHAP重要性筛选和递归特征消除(RFE)。
2025-05-16 14:09:44
800
原创 day 16 Numpy数组与Shap值的深入理解
介绍了梯度下降法步骤以及numpy数组的索引方式,对shap值进行了深入理解,解决了因为维度不一致导致绘制shap库报错的问题
2025-05-14 12:29:15
1095
原创 day 15 数据集实操
文章详细描述了一个关于学生辍学与成功预测的数据集实操过程,包括数据导入、探索、预处理、特征工程、模型训练与评估等步骤。通过逻辑回归、随机森林和XGBoost等模型进行基准测试,并采用SMOTE过采样和类别权重调整处理数据不平衡问题。最后,通过网格搜索和贝叶斯优化进行模型调参,并使用SHAP进行模型可解释性分析,揭示了影响学生辍学的主要因素。
2025-05-13 11:57:30
1447
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人