高数 | 定理及性质证明 | 导数零点定理为什么导数可以不连续?

本文探讨了零点定理和达布定理在数学分析中的应用,指出即使导数不连续,函数依然可能存在零点。通过构造函数和利用罗尔中值定理,证明了在一定条件下,总能找到一点使得导数值等于给定范围内的任意值,进一步解释了导数的性质与函数零点的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零点定理 定义:如果函数y= f(x)在区间[a,b]上的图象连续不断(连续)的一条曲线(可导),并且有f(a)·f(b)<0,那么,函数y= f(x)在区间(a,b)内有零点,即至少存在一个c∈(a,b),使得f(c)=0,这个c也就是方程f(x)= 0的根。

达布定理 定义:设y=f(x)在(A,B)区间中可导,且【a,b】包含于(A,B),f'(a)<f'(b),则对于任意给定的η:f'(a)<η<f'(b),都存在一点c∈(a,b)使得f'(c)=η。

已知f'(a)<η<f'(b),构造函数:g(x)=f(x)-ηx。若g(a)=g(b),则由罗尔中值定理:存在ε∈(a,b)使g'(ε)=0。不妨设g(a)>g(b),又g'(b)>0,由极限保号性,存在ξ∈(a,b)使g(ξ)<g(b)<g(a)。由介值定理存在ζ∈(a,ξ)使g(ζ)=g(b)。又由罗尔中值定理,存在δ∈(ζ,b)使g'(δ)=0。所以无论如何总存在x∈(a,b)使g'(x)=0即f'(x)=η

可导函数,当导数不连续时,必然存在震荡间断点。

这就使导函数在震荡的时候穿过x轴使得f'(c)=0,也解决了我的疑问。

(导数零点定理的证明中,没有使用到导数连续这个条件,所以也就是说导数可以不连续,其实这就已经说明了这个问题的答案)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值