K-Planes代码记录

随记

原文 K-Planes: Explicit Radiance Fields in Space, Time, and Appearance,又要换baseline,可是效果不好能怎么办呢,我可不可以发疯。k-planes的代码又是非常工程琐碎的,大佬的代码果然不顾小白死活。随便记录下整个过程。
在这里插入图片描述

代码记录

main.py

主要用于:加载config文件,data,初始化等

loda_data() # 加载数据
init_trainer()	# 初始化模型(包括k-planes loss function等各种)
load_model()

type有几个参数可选,其中phototourism等价于NeRF-Wvideo相当于动态场景,其他是静态;从line 70进入各种初始化步骤。

在这里插入图片描述
所有参数都初始化完毕后,开始训练

line 160      trainer.train()

base_train.py

一系列参数的初始化
在这里插入图片描述

还有损失函数的计算和优化
在这里插入图片描述

lowran_model.py

经过一系列跳转,在这个文件下进行KPlaneField,KPlaneDensityField,ProposalNetworkSampler等一系列采样和plane的生成和初始化操作,还有forward()函数,插值,query_rgb query_density。这里我只关心k-plane生成
在这里插入图片描述

kplane_field.py

1. 生成并初始化K-planes

在这里插入图片描述

最后生成以下k-planes:

在这里插入图片描述
2. Init appearance code-related parameters等价于NeRF-W(略)
3. Init decoder params: 对方向进行编码
4. 初始化decoder
这里有两种选择,使用论文中的线性解码器还是MLP,直接看else line189-217

video_trainer.py

其他的初始化都没那么重要,第二重要的loss,k-plane添加了很多正则化的loss,就在这个函数里进行初始化
在这里插入图片描述

需要注意的点

  1. pytorch提供的插值函数需要将x归一化的[-1,1]之间
  2. 损失函数的计算
  3. F.grid_sample()双线性差值函数的坑

这里详细说下第三点:

torch.nn.functional.grid_sample(input, grid, mode='bilinear', padding_mode='zeros', align_corners=None)
# input = [N, C , H, W]
# grid = [B, 1, n, 2]   coordinate

关于grid最后两维是uv,举例:如果u=x, v=time,则是在往input里的W和H处插值,即:x对应W,time对应H,刚好是相反的对应关系。在kplane中 第三个plane (一个6个)是 (x,t),获得 grid = torch.Size([1, 1, 194915, 2]) 其中最后一维是xt,但是去看要插值的网格 [1,32,25,128],这里的25肯定是t的分辨率,所以刚好是 [batch_size, feature_dim, t_res, x_res]和gird最后一维的顺序相反
关于这点就是非常非常小的细节,虽然不影响使用,但是如果想修改的话一定注意!

记录一下求ray还是什么的区别,暂时没有很重要。不过原文里的这部分好像被删掉了,这里是在B站up那里截的图。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值