Cauchy-Schwarz Inequality

本文详细介绍了Cauchy-Schwarz不等式及其在积分中的应用,包括Minkowski不等式、Hölder不等式和Young不等式的证明和推导,展示了这些不等式在数学分析中的重要性。
摘要由CSDN通过智能技术生成

Cauchy-Schwarz Inequality

Keyword : Cauchy–Schwarz inequality Minkowski inequality Young’s inequality Hölder’s inequality

f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 1 ≤ f ( x ) ≤ 3 1\leq f(x)\leq 3 1f(x)3 .证明:
1 ≤ ∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 1\leq\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} 101f(x)dx01f(x)1dx34
Proof: According to Cauchy-Schwarz inequality
∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≥ ( ∫ 0 1 d x ) 2 = 1 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\geq\big(\int_{0}^{1}\mathrm{d}x\big)^{2}=1 01f(x)dx01f(x)1dx(01dx)2=1
because 1 ≤ f ( x ) ≤ 3 1\leq f(x)\leq3 1f(x)3, then
( f ( x ) − 1 ) ( f ( x ) − 3 ) f ( x ) ≤ 0 \frac{\big(f(x)-1\big)\big(f(x)-3\big)}{f(x)}\leq 0 f(x)(f(x)1)(f(x)3)0
Opening the brakests ,we reduce
f ( x ) + 3 f ( x ) ≤ 4 f(x)+\frac{3}{f(x)}\leq4 f(x)+f(x)34
and also because
∫ 0 1 f ( x ) d x ∫ 0 1 3 f ( x ) d x ≤ 1 4 ( ∫ 0 1 f ( x ) d x + ∫ 0 1 3 f ( x ) d x ) 2 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\leq \frac{1}{4}\bigg(\int_{0}^{1}f(x)\mathrm{d}x+\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\bigg)^{2} 01f(x)dx01f(x)3dx41(01f(x)dx+01f(x)3dx)2
then we reduce
∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} 01f(x)dx01f(x)1dx34
so
1 ≤ ∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 1\leq \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq \frac{4}{3} 101f(x)dx01f(x)1dx34


Cauchy-Schwarz Inequality

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

The inequality for sums was published by Augustin-Louis Cauchy(1821), while the corresponding inequality for integrals was first proved by Viktor Bun-yakovsky (1859) . Later the integral inequality was rediscovered by Hermann Ama-ndus Schwarz (1888).

In Euclidean space R n R^{n} Rn with the standard inner product ,the Cauchy–Schwarz inequality is
∑ k = 1 n ( a k b k ) 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) \sum_{k=1}^{n}\big(a_{k}b_{k}\big)^{2}\leq \big(\sum_{k=1}^{n}a_{k}^{2}\big)\big(\sum_{k=1}^{n}b_{k}^{2}\big) k=1n(akbk)2(k=1nak2)(k=1nbk2)
The Cauchy–Schwarz inequality can be proved using only ideas from elemen-tary algebra in this case. Consider the following quadratic polynomial in t t t ,then
H ( t ) = ∑ k = 1 n ( a k t + b k ) 2 = ( a 1 t + b 1 ) 2 + ( a 2 t + b 2 ) 2 + ⋯ + ( a n t + b n ) 2 ≥ 0 H(t)=\sum_{k=1}^{n}\big(a_{k}t+b_{k}\big)^{2}=(a_{1}t+b_{1})^{2}+(a_{2}t+b_{2})^{2}+\cdots+(a_{n}t+b_{n})^{2}\geq0 H(t)=k=1n(akt+bk)2=(a1t+b1)2+(a2t+b2)2++(ant+bn)20
which is
H ( t ) = ( ∑ k = 1 n a k 2 ) t 2 + 2 ( ∑ k = 1 n a k b k ) t +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值