论文笔记:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models

1. Motivation

大型语言模型(LLMs)如GPT-4、PaLM和LLaMA在各种推理任务中展现出了令人印象深刻的性能。除了通过扩大模型规模来提高推理性能外,还有更有效的提示方法可以进一步增强LLMs的功能和性能。然而,现有的单查询推理(single-query reasoning)和多查询推理(multi-query reasoning)方法都面临一些局限性,如缺乏普遍性和泛化能力、计算密集型、以及忽视从先前任务中提取一般性和高层次的指导思想或思维。为了解决这些限制,论文提出了一种新的方法。

  1. 单查询推理包括有:CoT(在输入查询后附加“Let’s think step by step”),和few-shot Prompting(提供与任务相关的demonstrations来帮助生成答案)
  2. 多查询推理:利用多个 LLM 查询来得出不同的合理推理路径,从而将一个复杂的问题分解为一系列更简单的子问题。如Least-to-Most,ToT,GoT

2. Contribution

  1. 提出了一种新的方法:Buffer of Thoughts (BoT)来提高基于 LLM 的推理的准确性、效率和稳健性。
  2. 设计了元缓冲区(meta-buffer)来存储从不同问题中提取的信息丰富的高层思想(thought-template),并针对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值