1.摘要
针对目前建筑物轮廓提取效率与提取精度不高的问题,本文以机载 LiDAR 点云数据为实验对象,提出了基于机载LiDAR 点云数据的点云滤波、建筑物点云提取、建筑物轮廓提取以及轮廓规则化方法。首先通过对原始点云进行滤波,得到非地面点云。在非地面点云中,使用改进的三维Hough 算法提取得到建筑物点云,并且使用算法对建筑物轮廓进行提取。由于建筑物点云分散,提取得到的建筑物轮廓需要进行规则化处理,本文使用线段长度加权法对提取得到的建筑物轮廓规则化处理,实现了基于机载点云数据的建筑物轮廓提取及规则化处理。研究结果表明:本文使用的建筑物轮廓提取方法提取得到的建筑物轮廓精度较高,适用性较强,为城市中距离近、体积小的建筑物轮廓提取提供了参考。
2.建筑物轮廓提取方法技术流程
2.1地面点滤波
点云滤波就是筛选出地面激光点与非地面激光点,并且将地面激光点与非地面激光点进行分离。渐进形态学点云滤波方法可以将场景中所有不同大小的非圆形地物检测出,主要的滤波操作为开操作运算。该点云滤波算法实现点云滤波是通过不断调整窗口大小,如,通过不断执行增加滤波窗口大小的开操作,从原始点云数据中将突出地面的不同大小的目标点云剔出。场景中建筑物表现为最外侧高程凸起,针对高地势顶部点云无法移除的问题,可以在开操作的基础上增加高差阈值的限制条件:ΔHp=|Hp′-Hp|,ΔHp≤Hpt表示地面,ΔHp≥Hpt表示建筑,其中,Hpt表示设置的高差阈值;Hp表示滤波前点的高程;Hp′表示滤波后点的高程,对滤波前后的高程插值进行判断,如差值大于高差阈值,此点为非地面点云,如差值小于高差阈值