多项式轨迹
\quad 一般情况下,通过指定初始时刻 t 0 t_0 t0和终点时刻 t 1 t_1 t1 的位置、速度和加速度等条件来定义一段运动。上面的表达可用一个函数来描述:
q = q ( t ) , t ∈ [ t 0 , t 1 ] q=q(t), \qquad t \in [t_0,t_1] q=q(t),t∈[t0,t1]
此函数能满足给定条件:
q ( t ) = a 0 + a 1 t + a 2 t 2 + . . . + a n t n q(t)=a_0+a_1t+a_2t^2+...+a_nt^n q(t)=a0+a1t+a2t2+...+antn
其中,根据初始时刻和终点时刻的约束条件可确定 n + 1 n+1 n+1个 a i a_i ai系数。多项式的次数 n n n取决于需满足条件的数量和目标运动的期望“平滑度”。由于边界条件的数量通常是偶数,所以确定的系数个数也是偶数,即多项式函数的次数 n n n是奇数,如3、5、7等。
\quad 通常情况下,除指定轨迹商的初始和终点时刻约束条件外,还可以指定其在某个时刻 t f ∈ [ t 0 , t 1 ] t_f \in [t_0,t_1] tf∈[t0,t1]的条件,如速度、加速度和加加速度等。
三次多项式
\quad 当同时指定 t 0 t_0 t0和 t 1 t_1 t1时刻的位置和速度时,即已知 q 0 、 q 1 、 v 0 、 v 1 q_0、q_1、v_0、v_1 q0、q1、v0、v1时,轨迹需要满足四个约束条件,即可以采用三次多项式来表示轨迹:
q ( t ) = a 0 + a 1 ( t − t 0 ) + a 2 ( t − t 0 ) 2 + a 3 ( t − t 0 ) 3 t 0 ≤ t ≤ t 1 q(t)=a_0+a_1(t-t_0)+a_2(t-t_0)^2+a_3(t-t_0)^3 \qquad t_0 \leq t \leq t_1 q(t)=a0+a1(t−t0)+a2(t−t0