一、定义、特点与应用场景
定义:红外小目标检测是从红外图像中识别微小(通常像素占比低)、信噪比低的目标,依赖物体热辐射成像,具有全天候工作能力。
特点:目标尺寸小、缺乏纹理/形状信息,易受噪声和复杂背景干扰。
应用场景:
- 军事:目标侦察、战场态势感知、精确制导。
- 安防:夜间监控、入侵检测、无人机巡逻。
- 航空航天:卫星遥感、空间目标监测、自然灾害预警。
二、技术演进与核心方法
- 传统方法:
- 背景建模:通过高斯混合模型(GMM)等构建背景,分离前景目标。
- 形态学滤波:如Tophat变换,利用结构元素抑制背景噪声。
- 空域/时域滤波:中值滤波平滑噪声,卡尔曼滤波处理动态目标。
- 局限性:复杂背景下鲁棒性差,难以处理低信噪比目标。
- 深度学习方法:
- 卷积神经网络(CNN):自动学习目标特征,如YOLO系列实现端到端检测。
- 改进策略:
- 特征增强:引入注意力机制(如CBAM)强化目标区域。
- 多尺度检测:FPN(特征金字塔网络)适应不同尺寸目标。
- 数据融合:结合可见光/雷达数据提升检测精度。
- 评价指标:
- 信杂比(SCR):衡量目标与背景的对比度。
- 背景抑制因子(BSF):评估背景干扰抑制效果。
- 检测率与虚警率:综合评估算法可靠性。
三、挑战与未来趋势
挑战:
- 复杂背景干扰:云层、海浪等动态背景导致高虚警率。
- 跨域泛化能力:不同传感器、环境下的模型适配性差。
- 实时性与精度平衡:深度学习模型复杂度高,难以满足实时需求。
未来趋势:
- 多模态大模型:
- 集成空基、天基、陆基多源数据,实现全域目标检测。
- 支持多波段(近红外、长波红外)和多分辨率(512×512至10000×10000)场景。
- 轻量化模型:通过知识蒸馏、模型剪枝优化推理速度。
- 强化学习:动态调整检测策略,适应战场等动态环境。
四、前沿实践:挑战赛
- 任务:广域红外小目标分割,要求算法具备高泛化能力。
- 数据集:整合SIRST-V2、IRSTD-1K等7个公共数据集,涵盖海陆空多场景。
- 评价指标:交并比(IoU)、检测概率(Pd)、虚警概率(Fa)。
- 技术方向:推动空天地一体化检测大模型研发,解决跨域泛化难题。