LoRA(Low-Rank Adaptation)模型核心基础知识


一、LoRA模型的概念

  • LoRA的全称:Low-Rank Adaptation of Large Language Models,是一种微调模型,可以理解为stable diffusion模型的一种插件,用于满足一种特定的风格,或指定的人物特征属性;
  • 我们可以使用SD模型+LoRA微调训练的方式,只训练参数量很小的LoRA模型,就能在下游细分任务中取得不错的效果;
  • LoRA大幅降低了SD模型训练时的显存占用,因为并不优化主模型(SD模型),所以主模型对应的优化器参数不需要存储。但计算量没有明显变化,因为LoRA是在主模型的全参梯度基础上增加了“残差”梯度,同时节省了主模型优化器更新权重的过程。

二、LoRA模型的核心原理

(一)LoRA模型的训练逻辑

  • 步骤一: 冻结训练好的SD模型的权重;
  • 步骤二: 在SD模型的U-Net结构中注入LoRA模块,并将其与CrossAttention模块结合,并只对这部分参数进行微调训练;
  • 步骤三: 训练好新的参数后,利用重参的方式,将新参数和老的模型参数合并。

在这里插入图片描述

(二)LoRA的参数合并方式

对于SD模型权重 W 0 ∈ R n × m W_0 \in \mathbb{R}^{n\times m} W0Rn×m,我们不再对其进行全参微调训练,而是对权重加入残差的形式,通过训练 Δ W \Delta W ΔW来完成优化过程:
W ′ = W 0 + Δ W W^{'} =W_0+\Delta W W=W0+ΔW
其中 Δ W = A B T \Delta W=AB^T ΔW=ABT A ∈ R n × d A\in \mathbb{R}^{n\times d} ARn×d B ∈ R d × m B\in \mathbb{R}^{d\times m} BRd×m d d d就是 Δ W \Delta W ΔW这个参数矩阵的秩,其通过低秩分解由两个低秩矩阵的乘积组成。由于下游细分任务的域非常小,所以d可以取得很小,很多时候可以取1。因此,在训练完成后,可以获得一个参数远小于SD模型的LoRA模型。

假设原来的是100x1024的参数矩阵,那么参数量为102400,LoRA模型将矩阵拆成了两个矩阵相乘,如果设置Rank=8,那么就是100x8的B矩阵与8x1024的A矩阵做矩阵乘法,参数量为800+8192=8992,整体参数量下降了约11.39倍。

在这里插入图片描述
矩阵乘积 A B T AB^T ABT 与SD模型的参数有相同的维度,同时分解出来的两个较小矩阵可以确保参数更新是在低秩情况下的,这样就显著减少训练的参数数量了。

  • 对于矩阵A:使用随机高斯分布初始化
  • 对于矩阵B:使用全0初始化
  • 初始状态下这两个矩阵相乘的结果为0,从而保证初始阶段时只有SD模型(主模型)生效

参考:
深入浅出完整解析LoRA(Low-Rank Adaptation)模型核心基础知识
什么是LoRA模型,如何使用和训练LoRA模型?你想要的都在这!
图像生成:SD LoRA模型详解

<think>嗯,用户问的是在银行系统已经接入了DeepSeek模型的情况下,如何进一步用RAG和LoRA技术优化模型性能,并且要求接入部分的代码用Java写。首先,我需要确认自己对这两个技术的理解是否正确,然后再考虑如何在Java中实现。 首先,RAG是检索增强生成,结合了检索外部知识库和生成模型的能力。在银行场景中,可能需要实时查询金融产品信息、政策法规或者用户历史数据。所以,用户可能需要一个高效的检索系统,比如使用Elasticsearch或者向量数据库,然后结合生成模型来生成更准确的回答。 然后是LoRA,这是一种微调大模型的方法,通过低秩矩阵适应,可以在不改变原模型参数的情况下,用较小的参数量来调整模型行为。对于银行来说,可能需要在特定任务上微调模型,比如客服对话、风险评估等,同时保持模型原有的通用能力。 接下来,用户需要的是Java代码示例。不过,这里可能存在一些挑战,因为通常像LoRA这样的微调操作可能在Python中更常见,使用诸如Hugging Face的Transformers库。而Java在深度学习框架方面可能不如Python丰富,但仍有Deep Learning4J这样的库。不过,用户可能已经接入了DeepSeek模型,可能通过API或者某种服务的方式调用,所以实际代码可能需要结合REST API调用或者现有的Java库。 首先,关于RAG部分。在Java中,可能需要连接到一个检索系统,比如Elasticsearch,执行查询,获取相关文档,然后将这些文档作为上下文输入到DeepSeek模型中。这里需要处理检索、上下文拼接等步骤。代码示例可能包括使用Elasticsearch的Java客户端进行查询,然后构造包含上下文的请求体,发送到DeepSeek的API。 然后是LoRA部分。LoRA的实现通常涉及在模型训练时添加适配器层。如果在Java中进行微调,可能需要使用支持LoRA的库,但常见的实现可能更多在Python中。不过,用户可能已经有一个微调后的模型,通过API调用,所以在Java中可能只需要在调用模型时指定使用的LoRA适配器(比如传递一个适配器ID或名称参数)。或者,如果需要在客户端进行实时适配,这可能比较复杂,可能需要加载模型参数,这在Java中可能不太方便。所以可能的代码示例是调用已经部署好的带有LoRA适配器的模型服务,传递适配器参数。 不过,用户可能希望的是在现有系统中集成这两个技术,因此可能需要考虑如何在现有架构中添加检索步骤,以及如何调用带有LoRA适配器的模型。假设DeepSeek的API已经支持LoRA适配器,那么Java代码中可能需要添加相应的参数。 现在需要组织这些思路,给出结构化的回答,包括技术简介、优化场景、代码示例以及注意事项。需要注意代码示例可能需要简化,比如使用伪代码或假设的API调用方式,因为实际实现可能依赖具体的库或服务接口。 另外,用户可能是在银行的技术部门工作,需要确保代码的安全性和高效性,所以可能需要提到相关的最佳实践,比如缓存检索结果、微调时的数据隐私保护等。同时,可能要考虑性能问题,比如检索系统的响应时间,模型调用的延迟等。 总结一下,回答的结构应该是: 1. RAG和LoRA的简介及其在银行系统中的优化场景。 2. RAG的Java代码示例,包括检索部分和模型调用。 3. LoRA的Java代码示例,可能涉及调用带有适配器参数的模型API。 4. 注意事项,包括性能、安全、数据隐私等。 5. 结语,总结好处。 在编写代码示例时,可能需要假设使用某些库或框架,比如Elasticsearch的Java客户端,以及HTTP客户端发送请求到模型API。同时,需要确保代码示例简洁,符合Java的语法规范,并且适当添加注释。 最后,需要验证这些思路是否正确,是否有遗漏的关键点,比如RAG中上下文如何拼接,是否截断,如何处理检索失败的情况,或者LoRA适配器的具体调用方式等。可能需要进一步明确用户的具体需求,但根据问题描述,用户可能希望一个高层次的示例,所以保持代码示例的简洁和示范性是关键。</think>在银行系统中结合RAG与LoRA技术可显著提升AI模型的精准度和专业性。以下为技术简介及Java接入示例: --- ### **一、技术价值与场景** 1. **RAG(检索增强生成)** - **作用**:实时检索知识库补充上下文(如产品条款/风控规则) - **银行场景**:客户咨询应答、合规审查、风险预警 2. **LoRA(低秩适配微调)** - **作用**:低成本微调模型适配专业任务(参数更新量<1%) - **银行场景**:信贷报告生成、交易数据分析、个性化推荐 --- ### **二、Java代码实现示例** #### **1. RAG模块实现** ```java // 伪代码需替换实际SDK调用 public class RagService { // 检索知识库(示例:Elasticsearch) public List<Document> retrieveRelevantDocs(String query) { RestClient client = RestClient.builder( new HttpHost("es-host", 9200, "http")).build(); Request request = new Request("GET", "/knowledge_base/_search"); request.setJsonEntity("{ \"query\": { \"match\": { \"content\": \"" + query + "\" } } }"); Response response = client.performRequest(request); return parseDocuments(response.getEntity().getContent()); } // 拼接上下文调用DeepSeek public String generateWithRAG(String userQuery) { List<Document> docs = retrieveRelevantDocs(userQuery); String context = docs.stream().map(Document::getText).collect(Collectors.joining("\n")); String prompt = "基于以下信息回答问题:\n" + context + "\n\n问题:" + userQuery; return DeepSeekClient.generate(prompt); // 假设已有模型调用封装 } } ``` #### **2. LoRA适配调用** ```java // 假设模型服务支持LoRA适配器切换 public class LoraAdapterService { public String generateWithLora(String input, String adapterId) { JsonObject requestBody = new JsonObject(); requestBody.addProperty("input", input); requestBody.addProperty("adapter_id", adapterId); // 指定业务适配器(如loan_risk_v1) HttpResponse response = Unirest.post("https://api.deepseek.com/v1/generate")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值