LoRA(Low-Rank Adaptation)原理与应用

LoRA是一种用于调整和微调大型神经网络的技术,特别适用于直接微调整个网络参数成本高昂或不切实际的情况。

原理讲解:

1. 低秩适应(LoRA)

LoRA的核心思想是在模型的权重矩阵中引入一个低秩结构,通常是通过添加一个可学习的低秩矩阵来实现。这个低秩矩阵可以看作是一个适应性变换,它在模型的前向传播过程中与原始权重相乘,从而调整权重的效果。

如果我们有一个权重矩阵 ( W ),LoRA通过引入一个低秩矩阵 ( A ) 来调整 ( W ),其中 ( A ) 的秩远小于 ( W ) 的秩。调整后的权重可以表示为 ( W’ = W + AB ),这里 ( A ) 和 ( B ) 是两个低秩矩阵,它们的乘积 ( AB ) 仍然是一个低秩矩阵。

2. 微调过程

在微调过程中,我们保持原始权重 ( W ) 不变,只优化低秩矩阵 ( A ) 和 ( B )。这样,我们可以用较少的参数和计算成本来调整模型的行为。

代码示例:

以下是使用LoRA对一个假设的模型权重进行微调的简化示例。

import torch
import torch.nn as nn

# 假设 W 是一个预训练模型的权重矩阵
W = torch.randn(1000, 1000, requires_grad=True)

# 定义两个可学习的低秩矩阵 A 和 B
A = nn.Parameter(torch.randn(1000, 10), requires_grad=True)
B = nn.Parameter(torch.randn(10, 1000), requires_grad=True)

# 计算 LoRA 调整后的权重矩阵 W_lora
W_lora = W + torch.matmul(A, B)

# 定义一个简单的神经网络层,使用调整后的权重
class AdjustedLayer(nn.Module):
    def __init__(self, in_features, out_features, weight):
        super(AdjustedLayer, self).__init__()
        self.weight = nn.Parameter(weight[:, :in_features], requires_grad=True)

    def forward(self, x):
        return x @ self.weight

# 创建网络层实例,使用调整后的权重
layer = AdjustedLayer(1000, 1000, W_lora)

# 模拟前向传播
input_data = torch.randn(1, 1000)
output_data = layer(input_data)

# 打印输出数据
print(output_data)

参考文献:

  1. Denoising Diffusion Probabilistic Models - DDPM的原始论文,介绍了DDPM的概念和应用。
  2. Low-Rank Adaptation of Large Pre-trained Models for Domain Specific Tasks - 一篇讨论LoRA技术在大型预训练模型上的应用的论文。

个人水平有限,有问题随时交流;

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值