二维比例导引制导及其MATLAB仿真_比例导引法 csdn matlab-CSDN博客
三维比例制导律matlab代码(含注释)_比例导引法matlab程序-CSDN博客
在上述的博客中已经介绍了二维和三维比例导引的matlab代码,这篇博客主要来分析一下比;例导引的算法本身的一些特点。
一、相对运动方程
这一块的原理就像是我们高中学习的运动学一样简单,为了简单分析,在制导领域常用二位交战平面分析不同的制导算法,因为三维的制导也可以分解成两个二维平面进行分析。那么在二位平面的相对运动可以用下图进行表示:

P点是导弹的位置,T是目标的位置。你可以想象为小时候两个小伙伴的追玩跑闹,P是你,T是你的另外一个小伙伴。那么我们最朴素的拦截打击期望是什么呢,也就是希望彼此相遇,也就是距离r为0。此外为了制导效果更好,我们希望知道彼此的运动状态,包含目前朝向信息(相对于某一参考轴的角度q)和速度朝向(相对于某一参考轴),而且还可以通过这俩角度获得前置角度
。于是我们想通过根据当前的信息调整速度方向让r→0,于是可以列以下方程组:

好,当我们知道了相对运动关系,我们就一直让导弹对准目标运动(追踪法)不就行了吗?根据这个公式当的时候
是最大的,r的减少速度是最大的。但是这样真的可行吗?
答:实际上这种是较为理想的想法,在实际的制导中,导弹在垂直于弹体的方向加速度很大,但是转弯能力很弱,这样就会导致如果目标转向,很可能导弹需要转很大一圈才能追上,基于上述朴素的想法的制导律(追踪法:)会导致导弹一直在目标屁股后面追,末端轨迹比较弯曲,这样显然是效率不高的。
那么又有人说了,既然导弹转弯能力弱,那我保持导弹的接近角度去追不行吗(平行接近法:),这种方案也是原理上可行的,但是对目标的估计又谈何简单呢,因此这种方案在工程上难以实现。
于是基于这样的背景,比例导引法被提了出来:这种方法融合了追踪法和前置角法的优点,工程难度和弹道都是在这两种方法之间的。

二、比例导引法公式
先列一下比例导引的公式:
这个公式的含义是什么呢?其中K是比例系数,这个公式的含义是:在导弹导引过程中,导弹的速度矢量的旋转角速度与目标旋转角速度成比例。
比例导引法因工程实现简单、末端过载低和轨迹好被广泛应用在制导领域。将上式结合图2的关系,可以写出比例导引的导弹法的方程式:
上述方程式可以通过数值积分法或图解法解算,仅在特殊条件下(如比例系数K=2,目标作等速直线飞行,导弹作等速飞行时),才能得到解析解。
三、弹道特性
我们最希望的是获得一条直线弹道,因为这样可以基本没有横向过载。
直线弹道的条件:,所以需要
。根据上述的比例导引的导弹法的方程式,需要满足一直满足以下条件:
但是如下图一所示,这种直线飞行仅在前后追击和迎击的时候满足。
其他情况则会转动一个特别小的角度:
其中p为导弹和目标的速度比。
四、 需用法向过载分析和比例系数K的设计
未完待续