浅入深出的介绍比例导引法原理及分析

本文分析了二维比例导引算法在MATLAB中的应用,探讨了相对运动模型、追踪法与平行接近法的优缺点,重点介绍了比例导引法则的公式和弹道特性,强调了比例系数对直线弹道的影响以及法向过载的考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维比例导引制导及其MATLAB仿真_比例导引法 csdn matlab-CSDN博客

三维比例制导律matlab代码(含注释)_比例导引法matlab程序-CSDN博客

在上述的博客中已经介绍了二维和三维比例导引的matlab代码,这篇博客主要来分析一下比;例导引的算法本身的一些特点。

一、相对运动方程

这一块的原理就像是我们高中学习的运动学一样简单,为了简单分析,在制导领域常用二位交战平面分析不同的制导算法,因为三维的制导也可以分解成两个二维平面进行分析。那么在二位平面的相对运动可以用下图进行表示:

图1:二位导弹-目标相对运动图
图1.二维导弹-目标相对运动图

 P点是导弹的位置,T是目标的位置。你可以想象为小时候两个小伙伴的追玩跑闹,P是你,T是你的另外一个小伙伴。那么我们最朴素的拦截打击期望是什么呢,也就是希望彼此相遇,也就是距离r为0。此外为了制导效果更好,我们希望知道彼此的运动状态,包含目前朝向信息(相对于某一参考轴的角度q)和速度朝向(相对于某一参考轴\theta),而且还可以通过这俩角度获得前置角度\eta =q-\theta。于是我们想通过根据当前的信息调整速度方向让r→0,于是可以列以下方程组:

图2.导引关系方程

好,当我们知道了相对运动关系,我们就一直让导弹对准目标运动(追踪法)不就行了吗?根据这个公式当\eta =0的时候Vcos\eta 是最大的,r的减少速度是最大的。但是这样真的可行吗?

答:实际上这种是较为理想的想法,在实际的制导中,导弹在垂直于弹体的方向加速度很大,但是转弯能力很弱,这样就会导致如果目标转向,很可能导弹需要转很大一圈才能追上,基于上述朴素的想法的制导律(追踪法:\eta =0会导致导弹一直在目标屁股后面追,末端轨迹比较弯曲,这样显然是效率不高的。

那么又有人说了,既然导弹转弯能力弱,那我保持导弹的接近角度去追不行吗(平行接近法:q=q_0=C,这种方案也是原理上可行的,但是对目标的估计又谈何简单呢,因此这种方案在工程上难以实现。

于是基于这样的背景,比例导引法被提了出来:这种方法融合了追踪法和前置角法的优点,工程难度和弹道都是在这两种方法之间的。

图3.三种方法导弹弹道对比示意图

二、比例导引法公式

先列一下比例导引的公式:

\dot{\sigma}=\mathit{K}\dot{q}

这个公式的含义是什么呢?其中K是比例系数,这个公式的含义是:在导弹导引过程中,导弹的速度矢量的旋转角速度与目标旋转角速度成比例。

比例导引法因工程实现简单、末端过载低和轨迹好被广泛应用在制导领域。将上式结合图2的关系,可以写出比例导引的导弹法的方程式

\left.\left.\begin{aligned}\frac{\mathrm{d}r}{\mathrm{d}t}&=V_T\mathrm{cos}\eta_T-V\mathrm{cos}\eta\\\\r\frac{\mathrm{d}q}{\mathrm{d}t}&=V\mathrm{sin}\eta-V_T\mathrm{sin}\eta_T\\q&=\sigma+\eta\\q&=\sigma_T+\eta_T\\\frac{\mathrm{d}\sigma}{\mathrm{d}t}&=K\frac{\mathrm{d}q}{\mathrm{d}t}\end{aligned}\right.\right\}

 上述方程式可以通过数值积分法或图解法解算,仅在特殊条件下(如比例系数K=2,目标作等速直线飞行,导弹作等速飞行时),才能得到解析解。

三、弹道特性

我们最希望的是获得一条直线弹道,因为这样可以基本没有横向过载。

直线弹道的条件:\dot{\sigma }=0,所以需要\dot{q}=0 , \dot{\eta }=0。根据上述的比例导引的导弹法的方程式,需要满足一直满足以下条件:

但是如下图一所示,这种直线飞行仅在前后追击和迎击的时候满足。 

其他情况则会转动一个特别小的角度:

|q_{k}-q_{0}|\leqslant\frac{1}{K-1}\arcsin\left(\frac{1}{p}\right)

其中p为导弹和目标的速度比。 

四、 需用法向过载分析和比例系数K的设计

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值