大模型核心概念 : 嵌入模型(Embedding)与向量模型(Vector Model)

一、核心概念解析

1.1 嵌入模型(Embedding)

作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:

  • 文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92
  • 跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1.2 向量模型(Vector Model)

作为嵌入技术的下游应用体系,主要包含两大方向:

  • 判别式模型:基于SVM/神经网络的分类器(情感分析准确率可达92.3%)
  • 检索式模型:利用向量相似度计算(如Faiss索引加速)实现毫秒级语义搜索

二、主流模型性能全景对比

2.1 全球模型排行榜(MTEB基准)

参考地址:MTEB Leaderboard - a Hugging Face Space by mteb

排名模型名称Zero-shot参数量向量维度最大令牌数任务平均得分任务类型平均的愤怒双语挖掘分类聚类指令检索多标签分类成对分类重排序检索语义文本相似度(STS)
1gemini-embedding-exp-03-0799%Unknown3072819268.3259.6479.2871.8254.995.1829.1683.6365.5867.7179.40
2Linq-Embed-Mistral99%7B40963276861.4754.2170.3462.2451.270.9424.7780.4364.3758.6974.86
3gte-Qwen2-7B-instruct⚠️ NA7B35843276862.5156.0073.9261.5553.364.9425.4885.1365.5560.0873.98
4multilingual-e5-large-instruct99%560M102451463.2355.1780.1364.9451.54-0.4022.9180.8662.6157.1276.81
5SFR-Embedding-Mistral96%7B40963276860.9354.0070.0060.0252.570.1624.5580.2964.1959.4474.79
6GritLM-7B99%7B4096409660.9353.8370.5361.8350.483.4522.7779.9463.7858.3173.33
7text-multilingual-embedding-00299%Unknown768204862.1354.3270.7364.6448.474.0822.8081.1461.2259.6876.11
8GritLM-8x7B99%57B4096409660.5053.3968.1761.5550.882.4424.4379.7362.6157.5473.16
9e5-mistral-7b-instruct99%7B40963276860.2853.1870.5860.3151.39-0.6222.2081.1263.8255.7574.02
10Cohere-embed-multilingual-v3.0⚠️ NAUnknown1024Unknown61.1053.3170.5062.9547.61-1.8922.7479.8864.0759.1674.80
11gte-Qwen2-1.5B-instruct⚠️ NA1B89603276859.4752.7562.5158.3252.590.7424.0281.5862.5860.7871.61
12bilingual-embedding-large98%559M102451460.9453.0073.5562.7747.24-3.0422.3679.8361.4255.1077.81
13text-embedding-3-large⚠️ NAUnknown3072819158.9251.4862.1760.2747.49-2.6822.0379.1763.8959.2771.68
14SFR-Embedding-2_R96%7B40963276859.8452.9168.8459.0154.33-1.8025.1978.5863.0457.9371.04
15jasper_en_vision_language_v192%1B896013107260.630.2622.6655.1271.50
16stella_en_1.5B_v592%1B896013107256.5450.0158.5656.6950.210.2121.8478.4761.3752.8469.91
17NV-Embed-v292%7B40963276856.2549.6457.8457.2941.381.0418.6378.9463.8256.7271.10
18Solon-embeddings-large-0.1⚠️ NA559M102451459.6352.1176.1060.8444.74-3.4821.4078.7262.0255.6972.98
19KaLM-embedding-multilingual-mini-v193%494M89651257.0550.1364.7757.5746.35-1.5020.6777.7060.5954.1770.84
20bge-m398%568M4096819459.5452.2879.1160.3541.79-3.1120.1080.7662.7954.5974.12

2.2 细分领域冠军模型

中文场景TOP3
  1. BGE-M3:支持8192长文本,金融领域语义相似度达87.2%
  2. M3E-base:轻量级模型推理速度达2300 QPS
  3. Ernie-3.0:百度知识图谱融合模型,摘要生成ROUGE-L值72.1
跨语言模型TOP3
  1. BGE-M3:支持108种语言混合检索,跨语言映射准确率82.3%
  2. Nomic-ai:8192 tokens长文本处理能力,合同解析效率提升40%
  3. Jina-v2:512维轻量化设计,边缘设备内存占用<800MB

2.3 企业级选型策略

在这里插入图片描述

三、技术架构创新趋势

3.1 动态维度输出技术

  • Matryoshka嵌套向量:通过训练模型输出256-1792维的灵活向量(如BGE-M3模型),实现不同精度需求的按需裁剪,资源利用率提升40%
  • 稀疏注意力机制:NV-Embed采用潜在注意力层替代传统均值池化,使关键语义捕获效率提升58%

3.2 跨模态统一空间构建

  • 多模态对齐架构:CLIP-like模型(如阿里云M6)实现文本-图像-音频的联合嵌入,医疗影像报告分析准确率提升至89%
  • 层次化表征学习:分层编码器将对象拆解为原子特征(颜色/形状/纹理),支持组合式生成(如AI绘画中的风格迁移)

3.3 上下文理解增强

  • 双向时序建模:在Transformer架构中引入时间戳嵌入,实现动态上下文感知(如金融合同版本差异识别)
  • 因果推理嵌入:通过因果图网络构建因果向量空间,解决传统相似度计算的逻辑谬误问题

四、如何学习AI大模型 ?

“最先掌握AI的人,将会晚掌握AI的人有竞争优势,晚掌握AI的人比完全不会AI的人竞争优势更大”。 在这个技术日新月异的时代,不会新技能或者说落后就要挨打。

老蓝我作为一名在一线互联网企业(保密不方便透露)工作十余年,指导过不少同行后辈。帮助很多人得到了学习和成长。

我是非常希望可以把知识和技术分享给大家,但苦于传播途径有限,很多互联网行业的朋友无法获得正确的籽料得到学习的提升,所以也是整理了一份AI大模型籽料包括:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、落地项目实战等 免费分享出来。

👉点击即可获取大模型学习包2024年最新版👈

  1. AI大模型学习路线图
  2. 100套AI大模型商业化落地方案
  3. 100集大模型视频教程
  4. 200本大模型PDF书籍
  5. LLM面试题合集
  6. AI产品经理资源合集

大模型学习路线

想要学习一门新技术,你最先应该开始看的就是学习路线图,而下方这张超详细的学习路线图,按照这个路线进行学习,学完成为一名大模型算法工程师,拿个20k、15薪那是轻轻松松!

视频教程

首先是建议零基础的小伙伴通过视频教程来学习,其中这里给大家分享一份与上面成长路线&学习计划相对应的视频教程。文末有整合包的领取方式

技术书籍籽料

当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,这里也分享一份我学习期间整理的大模型入门书籍籽料。文末有整合包的领取方式

大模型实际应用报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。文末有整合包的领取方式

大模型落地应用案例PPT

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。文末有整合包的领取方式

大模型面试题&答案

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。文末有整合包的领取方式

领取方式

这份完整版的 AI大模型学习籽料我已经上传CSDN,需要的同学可以微⭐扫描下方CSDN官方认证二维码免费领取

### Ollama 向量模型文档使用实例 Ollama是一个用于处理自然语言理解和生成的任务框架,其中涉及到了向量存储和工具绑定等功能。当涉及到具体操作时,可以观察到通过`.bind_tools`方法可以让模型获取额外的功能支持[^1]。 对于Ollama中的向量模型部分,其核心概念围绕着`langchain.vectorstores`展开。该模块提供了向量存储功能,不仅能够保存嵌入的数据,还具备执行向量搜索的能力[^2]。这意味着开发者可以通过此特性实现高效的信息检索机制,在大规模数据集中快速定位相似项或相关内容。 下面给出一段简单的Python代码片段展示如何创建并利用这样的向量库: ```python from langchain import VectorStore, EmbeddingModel embedding_model = EmbeddingModel() # 初始化嵌入模型 vector_store = VectorStore(embedding_model=embedding_model) # 添加一些示例文本及其对应的ID至向量库中 documents = [("doc_0", "The quick brown fox jumps over the lazy dog."), ("doc_1", "A journey of a thousand miles begins with a single step.")] for doc_id, text in documents: embedding_vector = embedding_model.encode(text) vector_store.add_document(doc_id, embedding_vector) query_text = "What is the beginning of a long journey?" query_embedding = embedding_model.encode(query_text) search_results = vector_store.search_vectors([query_embedding]) print(search_results) ``` 上述脚本首先定义了一个基于某种预训练好的嵌入模型向量库;接着往里面加入了两篇文档作为样本;最后演示了怎样针对给定查询字符串进行语义匹配查找最接近的结果。 至于代理(Agents),它们负责挑选合适的工具集(Tools and Toolkits)来完成特定任务[^3]。这表明如果要构建更复杂的应用场景,则可能需要设计智能体去动态决定何时何地应用何种资源辅助决策过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值