超绝新思路!用NHANES数据库做出生队列研究,拿下JAMA子刊(IF=10.5)

 引言

众所周知,NHANES数据库所包含的是横断面数据,但今天分享的这篇一区top文章,学者另辟蹊径,对横断面数据做了出生队列分析!这个研究思路很新奇,怪不得可以发文JAMA子刊(IF=10.5)!

接下来,让我们一起看看这篇文章!

在过去的几十年里,美国人口总胆固醇和空腹甘油三酯的平均水平大幅下降,但新数据表明,这些趋势的下降速度在年轻人群中已经减缓。相反,糖尿病和肥胖的患病率在该阶段内有所增加,特别是在65岁以下的老年人中。

然而,目前尚不清楚胆固醇、甘油三酯和葡萄糖水平的趋势在不同的年龄段中是如何变化的,以及以体重指数(BMI)衡量的肥胖的不良增加趋势是否与这些模式有关。

2024年12月2日,外国学者用NHANES数据库,在顶级期刊JAMA子刊JAMA Network Open(医学一区top,IF=10.5)发表题为:“Cholesterol, Triglyceride, and Glucose Levels Across Birth Cohorts in the US”的研究论文,旨在量化1920~1999年的出生队列中总胆固醇、空腹甘油三酯和空腹血糖水平的变化趋势,并评估体重指数 (BMI)与这些变化趋势之间的关联。

研究结果表明,在该项横断面研究中,年龄越小,体内总胆固醇和空腹甘油三酯水平越低、空腹血糖水平越高。此外,BMI水平在该关联中起到一定的中介作用。

fde8f3a905b29029ca9b28777c3b77c3.png

本公号回复“ 原文”即可获得文献PDF等资料。想用NHANES发文,看看这个可一键提取和分析数据的NHANES零代码分析平台!如感兴趣请联系郑老师团队,微信号:aq566665

研究团队基于美国国家健康与营养调查(NHANES)据库1999~2000年和 2017~2020年的数据,经过纳排,最终纳入了52,006名年龄≥18岁的非孕期状态的美国成年人,加权中位年龄为46岁,其中50.6%为女性。

4b626800054b829a04f3d79a433ac0e6.png

图1 研究人群筛选流程图

主要结果:总胆固醇、空腹甘油三酯、空腹血糖和BMI水平。

研究团队使用分位数回归模型报告了平均边际效应(AME),以量化每相差十年出生的人群,心脏代谢结果指标的平均变化。同时,他们通过参数回归模型估计出生队列与结果的关联,并通过中介分析评估BMI水平在该关联中是否发挥了中介作用。

较晚的出生队列发生心脏代谢疾病的风险更低

研究结果显示,在调整年龄、性别、种族和民族后,相较于较早出生的人群,较晚出生人群的总胆固醇和空腹甘油三酯水平较低、空腹血糖水平较高。

fe72032c63f31c796c861b6ad7bc11c6.png

图2 出生队列中总胆固醇、空腹甘油三酯、空腹血糖水平和BMI的趋势

团队采用了五个百分位数(第90、第75、第50、第25和第10个百分位数)来测量各心脏代谢结果指标的水平。其中,以第50个百分位数的测量结果为例,具体表现如下:

  • 总胆固醇水平:每晚10年出生的队列的总胆固醇水平平均降低了7.1mg/dL;

  • 空腹甘油三酯水平:每晚10年出生的队列的空腹甘油三酯水平平均降低13.1mg/dL;

  • 空腹血糖水平:每晚10年出生的队列的空腹血糖水平增加了2.7mg/dL。

e2fac9db556e83d4093924efe922b42f.png

表1 根据总胆固醇、空腹甘油三酯、空腹血糖水平和BMI的分位数调整的出生队列AME

此外,研究结果还表明,BMI在出生队列与总胆固醇、空腹甘油三酯和空腹血糖水平的关联中均起到中介作用。具体结果如下:

  • BMI减弱了出生队列与体内总胆固醇以及空腹甘油三酯水平的关联;

  • BMI增强了出生队列与空腹血糖水平之间的关联。

c8d37f5a10af706f3ad33eca61ea9a41.png

表2 BMI在出生队列与总胆固醇、空腹甘油三酯和空腹血糖水平之间的中介作用

综上所述,相较于较早出生的人群,较晚出生人群的总胆固醇和空腹甘油三酯水平较低,但空腹血糖水平较高。此外,随着BMI水平的升高,这一人群中的总胆固醇和甘油三酯水平的下降趋势减缓,而空腹血糖水平的上升趋势则加速。

今天分享的这篇文章的研究主题非常新颖,很少能看到用NHANES数据做出生队列研究!如果你也对该思路感兴趣但是对选题还有些迷茫,郑老师的NHANES一对一统计服务课程绝对能帮上大忙!专业统计师为你提供个性化选题+统计分析方法指导!现在报名还会送一年的NHANES平台使用权哦!

欢迎关注“公共数据库与孟德尔随机化”公众号,我们将持续为你提供NHANES指标的发文思路和统计分析方法解读!

郑老师统计团队及公众号

全国较大的线上医学统计服务平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理!

我们提供以医学数据数据挖掘统计服务

①NAHANES:一二区论文占半数

②MIMIC:急诊数据分析与机器学习建模

③GBD:全球、中国各种疾病患病、死亡研究

孟德尔随机化:疾病的因果推断研究

同时我们提供上述数据库的挖掘的一对一指导

GBD、NHANES医学数据库挖掘1对1R语言指导

联系助教陈老师咨询(微信号sas555777

1384463cd68220cefad824a4db5f3967.jpeg

使用NHANES(National Health and Nutrition Examination Survey)数据库需要进行以下几个步骤: 1. **下载数据**: - 访问NHANES的官方网站(https://www.cdc.gov/nchs/nhanes/index.htm)。 - 在数据部分,选择你需要的调查年份和数据类型。 - 下载相关的数据文件和文档说明。 2. **了解数据结构**: - 阅读下载的文档说明,了解数据的结构、变量含义和编码方式。 - NHANES的数据通常以SAS、XPT或CSV格式提供。 3. **导入数据**: - 根据你使用的软件(如R、Python、Stata等),选择合适的方法导入数据。 - 例如,在R中可以使用`foreign`包或`haven`包导入SAS或XPT格式的数据: ```R library(haven) data <- read_xpt("path_to_file.xpt") ``` - 在Python中可以使用`pandas`库: ```python import pandas as pd data = pd.read_sas('path_to_file.xpt', format='xport') ``` 4. **数据清洗和预处理**: - 根据需要,对数据进行清洗和预处理,如处理缺失值、编码转换等。 - 例如,在R中可以使用`dplyr`包进行数据处理: ```R library(dplyr) data_clean <- data %>% filter(!is.na(variable_of_interest)) ``` 5. **数据分析**: - 根据研究目的,进行描述性统计、回归分析、绘图等。 - 例如,在R中可以使用`ggplot2`包进行绘图: ```R library(ggplot2) ggplot(data_clean, aes(x=variable1, y=variable2)) + geom_point() ``` 6. **结果解释**: - 根据分析结果,解释数据背后的意义,并与文献中的结果进行比较。 通过以上步骤,你可以有效地使用NHANES数据库进行健康和营养相关的研究
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值