GEE数据集——MCD12Q1.006 MODIS土地覆被类型 全球500m

MCD12Q1V6产品提供了2001年至2016年的全球土地覆被类型数据,基于MODISTerra和Aqua的反射率数据进行监督分类。经过后处理,结合先验知识和辅助信息,以增强特定类别的准确性。用户可以利用EarthEngineAPI访问和分析这些数据,进行土地覆盖变化的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MCD12Q1 V6 产品以每年(2001-2016 年)的间隔提供全球土地覆被类型,这些类型源自六种不同的分类方案。它是使用MODIS Terra和Aqua反射率数据的监督分类得出的。然后,监督分类进行额外的后处理,这些后处理结合了先验知识和辅助信息,以进一步完善特定类别。

The MCD12Q1 V6 product provides global land cover types at yearly intervals (2001-2016) derived from six different classification schemes. It is derived using supervised classifications of MODIS Terra and Aqua reflectance data. The supervised classifications then undergo additional post-processing that incorporate prior knowledge and ancillary information to further refine specific classes.

Dataset Availability

2001-01-01T00:00:00Z–2020-01-01T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Earth Engine Snippet

ee.ImageCollection("MODIS/006/MCD12Q1")

Bands

LC_Type1 Class Table

代码

 

var dataset = ee.ImageCollection('MODIS/006/MCD12Q1');
var igbpLandCover = dataset.select('LC_Type1');
var igbpLandCoverVis = {
  min: 1.0,
  max: 17.0,
  palette: [
    '05450a', '086a10', '54a708', '78d203', '009900', 'c6b044', 'dcd159',
    'dade48', 'fbff13', 'b6ff05', '27ff87', 'c24f44', 'a5a5a5', 'ff6d4c',
    '69fff8', 'f9ffa4', '1c0dff'
  ],
};
Map.setCenter(6.746, 46.529, 6);
Map.addLayer(igbpLandCover, igbpLandCoverVis, 'IGBP Land Cover');

 

展示

下载示例代码

//研究区
var roi = ee.FeatureCollection("users/sihaixiang/shandong").geometry(); 

//批量下载函数
function exportImage(image, roi, fileName) {  
    Export.image.toDrive({  
       image: image,  
       description: "Drive-image-"+fileName,  
       fileNamePrefix: fileName,  //文件命名
       folder: "MODIS_土地覆盖",  //保存的文件夹
       scale: 500,  //分辨率
       region: roi,  //研究区
       maxPixels: 1e13,  //最大像元素,默认就好
       crs: "EPSG:4326"  //设置投影
   });  
 } 

//加载数据集
//MCD12Q1产品下的土地覆盖产品,分辨率为500米
var data = ee.ImageCollection("MODIS/006/MCD12Q1");  


//筛选数据
var data_selected = data.filterBounds(roi) 
               .filterDate("2016-7-28", "2019-9-30")

print("data_selected", data_selected); 

//生成列表,迭代下载
var indexList = data_selected.reduceColumns(ee.Reducer.toList(), ["system:index"]).get("list"); 
print("indexList", indexList);
indexList.evaluate(function(indexs) { 
    for (var i=0; i<indexs.length; i++) {  
        var image = data_selected.filter(ee.Filter.eq("system:index", indexs[i]))
              .first()

              .toInt16()  //设置数据类型 
              .clip (roi);   //裁剪数据
        exportImage(image, roi, indexs[i]);  //保存图像至Google网盘
   }
 });

 

### 使用 MODIS 006 MCD12Q2 数据集计算生长季节长度 MODIS MCD12Q2 数据集提供了关于植被物候学的信息,特别是有关植物生命周期的关键阶段的数据。该数据集包含了多个变量,其中一些可以直接用于推导生长季节的起始、结束以及持续时间。 #### 获取和预处理数据 为了获取MCD12Q2数据,可以使用Google Earth Engine (GEE),这是一个强大的平台,允许用户访问大量的遥感影像并执行复杂的分析操作而无需下载大量原始文件到本地计算机上。通过编写简单的JavaScript脚本可以在云端完成大部分工作[^3]。 ```javascript // 定义研究区域 var region = ee.Geometry.Polygon( [[[longitude_min, latitude_max], [longitude_max, latitude_max], [longitude_max, latitude_min], [longitude_min, latitude_min]]]); // 加载MCD12Q2数据集合 var dataset = ee.ImageCollection('MODIS/006/MCD12Q2') .filterBounds(region); function maskClouds(image){ var qa = image.select('LC_Type1'); return image.updateMask(qa.neq(0)); } dataset = dataset.map(maskClouds); ``` 这段代码定义了一个感兴趣的研究区,并加载了指定区域内所有的MCD12Q2图像。接着应用掩膜函数去除云污染像元的影响。 #### 提取关键日期指标 MCD12Q2 中包含了一些重要的物候参数,比如`SOS`(Start of Season),`EOS`(End of Season)等。这些参数可以帮助我们确定每一年的具体生长期起点与终点位置: - `SOS`: 表示春季绿叶面积指数达到最大速率的时间点; - `EOS`: 秋季当LAI下降至最小值附近时对应的日子数; 因此,要获得某地区的平均生长季长度,则可以通过下面的方式实现: ```javascript // 计算多年均值 SOS 和 EOS var sosMean = dataset.select(['SOS']).mean(); var eosMean = dataset.select(['EOS']).mean(); // 将两者相减得到生长季天数差异图层 var seasonLength = eosMean.subtract(sosMean).rename('Season_Length'); Map.addLayer(seasonLength.clip(region), {min:0,max:90}, 'Average Growing Season Length', true); print(ui.Chart.image.seriesByRegion({ imageCollection: seasonLength, regions: region, reducer: ee.Reducer.mean(), scale: 500}) .setOptions({title:'Annual Average Growing Season Length'})); ``` 上述代码片段展示了如何基于多张年度合成后的SOS/EOS地图来估算整个时间段内的平均生长季长度,并将其可视化显示出来。同时还可以创建图表展示随时间变化的趋势情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值