pytorch统计网络深度与权重大小两种方式(pytorch-summary)

本文介绍了两种在PyTorch中统计网络深度和权重大小的方法。一种是通过手写代码来统计,另一种是利用第三方库torchsummary,该库提供了方便的模型概览功能,只需安装后导入即可使用。
摘要由CSDN通过智能技术生成

手撸代码

keras有个model.summary() 查看网络结构参数
pytorch没有
一般用print(model)查看网络结构
然后自己手写一个方法统计权重参数量

def CustomCal(net):
    res = 0
    for i in net:
        weight = i.weight.shape
        bias = i.bias.shape
        tmp=1
        for j in weight:
            tmp *= j
        res+=tmp
        res+=bias[0]
    return res

利用pytorch-summary

有大佬针对这个问题专门写了一个包去实现类似的功能
pytorch-summary

直接pip install torchsummary 安装
然后导入使用就行了

from torchsummary import summary
summary(your_model, input_size=(channels, H, W))
---------------------------</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值