快速部署使用tensorRT加速推理(trt,onnx)

本文介绍了如何利用TensorRT进行模型推理加速,包括NVIDIA自家的模型转换方法和通过ONNX读取的方式。对于PyTorch模型,可以使用torch2trt进行转换,而ONNX则提供了一种跨框架的解决方案。注意,如果PyTorch模型中包含ONNX不支持的操作,需要查阅官方文档解决。优化后的TensorRT模型速度提升显著,推荐尝试。
摘要由CSDN通过智能技术生成

TensorRT

nvidia推理框架,原理自行百度
跑推理的时候用的

两种方式

第一种nvidia自家的转换

这里拿pytorch做举例,其他的框架差不多
torch2trt

这里太简单了 我就把官方例子给一下

import torch
from torch2trt import torch2trt
from torchvision.models.alexnet import alexnet

# create some regular pytorch model...
model = alexnet(pretrained=True).eval().cuda()

# create example data
x = torch.ones((1, 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>