当C&R需要不同的波束时,可以优化预编码矩阵。基本优化公式如下:
其中 是目标函数。定义目标函数和约束可以有多种方法和组合。每个可以单独用于通信或传感,也可以用于加权联合功能。
1、基于互信息 (MI)
用于雷达传感的 MI 测量有多少有关信道、传播环境的信息被传送到接收器。条件 MI 定义为在已知发射信号条件下,感知信道和接收信号之间的熵。在数学上,这可以表示为
其中 是大小为
的单位矩阵,并且
。
用于通信的 MI 测量在已知传播环境信息时,接收器能从发送信号中获得多少信息。数学上表示为
其中,。
通用且灵活的目标函数可以基于两个 MI 的加权和:
其中, 和
分别是 C&R 的最大 MI,在优化中被视为两个已知常数,
是权重因子。
2、基于基于波束方向图相似度(Beampattern)
通常,我们期望 DFRC 波形具有一些有利于雷达感知的有用特性,例如良好的自相关和互相关、高峰旁瓣电平比 (PSLR)、低峰均功率比 (PAPR) ),以及对杂乱和干扰的抵抗力。然而,在单个波形中同时实现所有这些功能可能相当具有挑战性,特别是在ISAC的情况下,其中通信数据和信道的随机性可能会破坏为感知定制的波形结构。为了解决这一问题,人们可以考虑优化 DFRC 波形/波束方向图来近似设计良好的基准雷达信号,基准信号应具有上述用于雷达感知的特性。
我们在保证 个单天线下行链路用户的单独信号干扰噪声比 (SINR)
条件下, 得到近似基线雷达波束方向图。该优化问题可以表述为
其中,是要设计的 DFRC BF/预编码矩阵,
表示基准雷达波形的空间协方差矩阵,它生成有利的 MIMO 雷达波束方向图
,由下式给出
3、波形设计
除了近似MIMO雷达波束图的设计,还可以直接近似MIMO雷达波形本身来设计DFRC波形。MIMO通信信号模型的矩阵形式为
其中 包含供
个通信用户使用的信息符号。
所以制定以下优化问题来设计 DFRC 波形矩阵:
其中第一个约束是在给定的相似系数 的情况下,在
范数意义上显式控制
和基准
之间的距离。另一方面,第二个约束要求
为恒模 (CM),即 PAPR 为 0 dB。
可以是任何 CM 雷达信号矩阵,例如正交线性调频波形。
4、基于估计精度
传感参数估计的准确性对于雷达传感非常重要。由于接收到的信号不是感测参数的线性函数,因此通常很难获得估计的均方误差(MSE)等封闭式表达式,并将它们直接应用于优化。或者,我们可以导出并使用估计值的 CRLB,它是 MSE 的下限。信号估计的 CRLB 可以通过 Fisher 信息矩阵 (FIM) 的逆矩阵导出。对于通信信号,基于波束空间信道模型的一些传感参数的 CRLB 也已被推导。
【参考文献】