ISAC优化

当C&R需要不同的波束时,可以优化预编码矩阵\mathbf{P}。基本优化公式如下:

\arg\max_\text{P}{ \lambda ( \mathbf{P})},\quad\text{s.t. Constraints }1,2\cdots

其中 \lambda ( \mathbf{P})是目标函数。定义目标函数和约束可以有多种方法和组合。每个可以单独用于通信或传感,也可以用于加权联合功能。

1、基于互信息 (MI)

用于雷达传感的 MI 测量有多少有关信道、传播环境的信息被传送到接收器。条件 MI 定义为在已知发射信号条件下,感知信道和接收信号之间的熵。在数学上,这可以表示为

I_R(\mathbf{H}_R;\mathbf{Y}_R|\mathbf{X})=M\log_2\left(\det\left(\frac{1}{\sigma_z^2}\mathbf{X}^H\mathbf{\Sigma}_{H_R}\mathbf{X}+\mathbf{I}_K\right)\right)

其中 \mathbf{I}_K 是大小为 K\times K 的单位矩阵,并且 {\Sigma}_{H_R}=\mathbb{E}[\mathrm{H}_R\mathrm{H}_R^H]/M

用于通信的 MI 测量在已知传播环境信息时,接收器能从发送信号中获得多少信息。数学上表示为

I_{C}(\mathbf{X};\mathbf{Y}_{C}|\mathbf{H}_{C})=K\log_{2}\left(\det\left(\frac{1}{\sigma_{z}^{2}}\mathbf{H}_{C}^{H}\mathbf{\Sigma}_{X}\mathbf{H}_{C}+\mathbf{I}_{M}\right)\right)

其中,\Sigma_X=\mathbb{E}[\mathbf{X}\mathbf{X}^H]/K

通用且灵活的目标函数可以基于两个 MI 的加权和:

F=\frac{w_R}{F_R}I_R(\mathbf{H}_R;\mathbf{Y}_R|\mathbf{X})+\frac{1-w_R}{F_C}I_C(\mathbf{X};\mathbf{Y}_C|\mathbf{H}_C)

其中, F_CF_R 分别是 C&R 的最大 MI,在优化中被视为两个已知常数,w_R\in[0,1] 是权重因子。

2、基于基于波束方向图相似度(Beampattern)

通常,我们期望 DFRC 波形具有一些有利于雷达感知的有用特性,例如良好的自相关和互相关、高峰旁瓣电平比 (PSLR)、低峰均功率比 (PAPR) ),以及对杂乱和干扰的抵抗力。然而,在单个波形中同时实现所有这些功能可能相当具有挑战性,特别是在ISAC的情况下,其中通信数据和信道的随机性可能会破坏为感知定制的波形结构。为了解决这一问题,人们可以考虑优化 DFRC 波形/波束方向图来近似设计良好的基准雷达信号,基准信号应具有上述用于雷达感知的特性。

我们在保证 K个单天线下行链路用户的单独信号干扰噪声比 (SINR) \gamma_k 条件下, 得到近似基线雷达波束方向图。该优化问题可以表述为

\begin{aligned}&\min_{\begin{array}{c}\mathbf{P},\beta\\\end{array}}\left\|\mathbf{P}\mathbf{P}^H-\beta\mathbf{R}\right\|_F^2\\&s.t.\quad\beta\geq0,\quad\gamma_k\geq\Gamma_k,\forall k;\operatorname{diag}\left(\mathbf{P}\mathbf{P}^H\right)=\frac{P_T}{M_T}\mathbf{1}_{M_T}\end{aligned}

其中,\mathrm{P}\in\mathbb{C}^{M_T\times K}是要设计的 DFRC BF/预编码矩阵,\mathbf{R}\in\mathbb{C}^{M_{T}\times M_{T}} 表示基准雷达波形的空间协方差矩阵,它生成有利的 MIMO 雷达波束方向图 P_d(\theta),由下式给出

P_d\left(\theta\right)=\mathbf{a}^H\left(M_T,\theta\right)\mathbf{R} \mathbf{a}\left(M_T,\theta\right)

3、波形设计

除了近似MIMO雷达波束图的设计,还可以直接近似MIMO雷达波形本身来设计DFRC波形。MIMO通信信号模型的矩阵形式为

\mathbf{Y}_C=\mathbf{H}_C\mathbf{X}+\mathbf{Z}_C=\mathbf{S}+\underbrace{(\mathbf{H}_C\mathbf{X}-\mathbf{S})}_{\mathbf{MUI}}+\mathbf{Z}_C

其中\mathbf{S}\in\mathbb{C}^{K\times L} 包含供K个通信用户使用的信息符号。

所以制定以下优化问题来设计 DFRC 波形矩阵\mathbf{X}:

\begin{array}{c}\min\limits_{\mathbf{X}}\|\mathrm{H}_{C}\mathbf{X}-\mathbf{S}\|_{F}^{2}\\s.t.\quad\|\mathrm{vec}\left(\mathbf{X}\right)-\mathrm{vec}\left(\mathbf{X}_{0}\right)\|_{\infty}\leq\varepsilon;\left|x_{i,j}\right|^{2}=\frac{P_{T}}{M_{T}},\forall i,j\end{array}

其中第一个约束是在给定的相似系数\varepsilon 的情况下,在 L_{\infty}范数意义上显式控制 \mathbf{X} 和基准 \mathbf{X}_0 之间的距离。另一方面,第二个约束要求 \mathbf{X}为恒模 (CM),即 PAPR 为 0 dB。 \mathbf{X}_0可以是任何 CM 雷达信号矩阵,例如正交线性调频波形。

4、基于估计精度

传感参数估计的准确性对于雷达传感非常重要。由于接收到的信号不是感测参数的线性函数,因此通常很难获得估计的均方误差(MSE)等封闭式表达式,并将它们直接应用于优化。或者,我们可以导出并使用估计值的 CRLB,它是 MSE 的下限。信号估计的 CRLB 可以通过 Fisher 信息矩阵 (FIM) 的逆矩阵导出。对于通信信号,基于波束空间信道模型的一些传感参数的 CRLB 也已被推导。

【参考文献】

J. A. Zhang et al., "An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1295-1315, Nov. 2021

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值