连续性和可导性(两种类型的光滑性)

5.连续性和可导性

连续性:直觉上告诉我们,连续函数的图像必须能一笔画成
可导性:直觉上告诉我们,在可导函数的图像中不会出现尖角

5.1 连续性 (笔不离纸画曲线)

在一点处连续、在区间上连续

5.1.1 在一点处连续


例子1:
下图中左极限 ≠ \neq =右极限,所以双侧极限不存在

例子2:
下图函数在 x = a x=a x=a 处无定义, f ( a ) f(a) f(a)不存在

例子3:
下图双侧极限与 f ( a ) f(a) f(a)不等

例子4:
下图函数在 x = a x=a x=a 处连续

5.1.2 在一个区间上连续(函数在区间内每个点都连续)

[ a , b ] [a,b] [a,b]

( a , b ) (a,b) (a,b)

单侧连续性:函数定义域包括一个带有左端点和 / 或右端点的区间

右连续
x ∈ [ a , b ) lim ⁡ x → a + f ( x ) = f ( a ) x\in [a,b)\\ \lim_{x \rightarrow a^+}f(x)=f(a) x[a,b)xa+limf(x)=f(a)

左连续
x ∈ ( a , b ] lim ⁡ x → b − f ( x ) = f ( b ) x \in (a,b] \\ \lim_{x \rightarrow b^-}f(x)=f(b) x(a,b]xblimf(x)=f(b)

5.1.3 连续函数的一些例子

1.一个连续函数的常数倍是连续的
2.两个连续函数做加法、减法、乘法、复合,会得到另一个连续函数
3.一个连续函数除以另一个连续函数(除分母为0外)商函数处处连续
4.所有的指数函数和对数函数都是连续的
5.所有的三角函数也是连续的(除了在它们渐近线上)

5.1.4 介值定理




介值定理的应用:方程的解

例子:证明方程 x = c o s ( x ) x=cos(x) x=cos(x) 有一个解
不需要求出解的具体值,只需证明存在一个解即可

小窍门:将所有表达式放到等号左边

f ( x ) = x − c o s ( x ) = 0 f(x)=x-cos(x)=0 f(x)=xcos(x)=0 证明 f ( c ) = 0 f(c)=0 f(c)=0

y = x y=x y=x是连续函数, y = c o s ( x ) y=cos(x) y=cos(x)是连续函数,故 f ( x ) f(x) f(x)是连续函数

选取 a = 0 , b = π 2 a=0,b=\frac{\pi}{2} a=0b=2π
f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)上连续
f ( a ) = 0 − c o s ( 0 ) = − 1 < 0 f(a)=0-cos(0)=-1 \lt 0 f(a)=0cos(0)=1<0
f ( b ) = π 2 − c o s ( π 2 ) = π 2 > 0 f(b)=\frac{\pi}{2}-cos(\frac{\pi}{2})=\frac{\pi}{2} \gt 0 f(b)=2πcos(2π)=2π>0
由介值定理得,在区间 ( 0 , π 2 ) (0,\frac{\pi}{2}) (0,2π)上存在常数 c c c 使得 f ( c ) = 0 f(c)=0 f(c)=0,于是证明了方程 x = c o s ( x ) x=cos(x) x=cos(x) 至少有一个解

5.1.5 较难的介值定理例子

证明:任意的奇数次多项式至少有一个根(对于偶数次多项式不成立)
p ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 x 0 p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0x^0 p(x)=anxn+an1xn1++a0x0


5.1.6 连续函数的最大值和最小值


为了确保可以使用最大值与最小值定理,连续性区间必须是闭的

闭区间 [ a , b ] [a,b] [a,b]内函数连续,函数至少有一个最大值和一个最小值

闭区间 [ a , b ] [a,b] [a,b]内函数不连续,函数无最大最小值
开区间 ( a , b ) (a,b) (a,b)端点无定义,函数可能有最大最小值,也可能没有,也可能只有最大值或者只有最小值

5.2 可导性(函数图像无尖角)

5.2.1 平均速率

5.2.2 位移和速度



5.2.3 瞬时速度

开始时间 t t t,终止时间 u u u



不能用 u = t u=t u=t 作替换,会得到 0 0 \frac{0}{0} 00

h = u − t h=u-t h=ut,当 u u u 越来越靠近 t t t 时, h → 0 h\rightarrow 0 h0

5.2.4 速度的图像阐释


斜率就是时间段 ( t , u ) (t,u) (t,u) 的平均速度

5.2.5 切线

切线不是只能与曲线仅相交一次

下图函数图像在 x = 0 x=0 x=0 处出现尖角,故函数在此点处无导数

5.2.6 导函数



函数不可导的原因之一

5.2.7 作为极限比的导数

h h h 代表对 x x x 作了多少改变,因此用 Δ x \Delta x Δx 作替换


极限的重要阐释


上图公式的重要阐释

函数求导的目的:当对函数 f f f 求关于变量 x x x 的导数时,只是为了看一下当对 x x x 做极小变动时函数 f ( x ) f(x) f(x) 有什么变化

例子:

f ( x ) = x 2 , f ′ ( x ) = 2 x f(x)=x^2,f'(x)=2x f(x)=x2f(x)=2x
x = 6 x=6 x=6 时, f ( 6 ) = 36 , f ′ ( x ) = 12 f(6)=36,f'(x)=12 f(6)=36f(x)=12
x x x 变化 0.01 0.01 0.01 时,则函数值 36 36 36 将会变化 12 × 0.01 12×0.01 12×0.01,因此猜测 f ( 6.01 ) = 36.12 f(6.01)=36.12 f(6.01)=36.12
而实际结果为 36.1201 36.1201 36.1201,出现误差

上述误差的原因:

f ′ ( x ) f'(x) f(x) 并不真正地等于 Δ y \Delta y Δy Δ x \Delta x Δx 的比值,它等于当 Δ x \Delta x Δx 趋于 0 0 0 时该比值的极限

dy/dx的理解


dy/dx根本不是一个分数

5.2.8 线性函数的导数

f ( x ) = m x + b f(x)=mx+b f(x)=mx+b

5.2.9 二阶导数和高阶导数

f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = d y d x f'(x)=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=\frac{dy}{dx} f(x)=Δx0limΔxΔy=dxdy
f ′ ′ ( x ) = lim ⁡ Δ x → 0 f ′ ( x + Δ x ) − f ′ ( x ) Δ x = d d x ( d y d x ) = d 2 y d x 2 f''(x)=\lim_{\Delta x\rightarrow 0}\frac{f'(x+\Delta x)-f'(x)}{\Delta x}=\frac{d}{dx}(\frac{dy}{dx})=\frac{d^2y}{dx^2} f′′(x)=Δx0limΔxf(x+Δx)f(x)=dxd(dxdy)=dx2d2y
零阶导 f ( 0 ) ( x ) f^{(0)}(x) f(0)(x)(原函数,未进行求导)
三阶导 f ( 3 ) ( x ) f^{(3)}(x) f(3)(x)
四阶导 f ( 4 ) ( x ) f^{(4)}(x) f(4)(x)
n n n 阶导 f ( n ) ( x ) f^{(n)}(x) f(n)(x)

5.2.10 何时导数不存在

右导数

左导数

如果 左导数与右导数 存在且相等,那么实际导数存在且有相同的值


x > 0 , f ′ ( x ) = 1 x \gt 0,f'(x)=1 x>0f(x)=1
x < 0 , f ′ ( x ) = − 1 x \lt 0,f'(x)=-1 x<0f(x)=1
左侧斜率 ≠ \neq = 右侧斜率,在 x = 0 x=0 x=0处导数不存在

5.2.11 可导性和连续性


可导

连续

证明可导必连续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值