多元函数的极值和鞍点

33.多元函数的极值和鞍点

33.1 局部极值

33.2 局部极值的导数检验

33.2.1 一阶偏导检验


33.2.2 鞍点



33.2.3 二阶偏导检验

二元函数的 Hessian 矩阵

利用 Hessian 矩阵可判定多元函数的极值问题

例子:

33.3 有界闭区间中的绝对最大值和绝对最小值


例子:


区域R内的点

线段OA上的点

线段OB上的点

综合以上:

33.3.1 Summary of Max-Min Test

Hessian矩阵多元函数极值判定的重要工具。对于一个具有n个变量的多元函数f(x1, x2, ... , xn),Hessian矩阵是一个n×n的矩阵,其元素为二阶偏导数。Hessian矩阵的定义如下: Hessian矩阵的第i行第j列元素,即Hessian矩阵的第(i, j)元素,表示函数f对第i个变量x_i第j个变量x_j的混合偏导数。 多元函数极值可能出现在驻点 (critical point)或者临界点 (boundary point)上,通过Hessian矩阵可以判断一个驻点的极值类型。具体的判断方法如下: 1. 首先,计算函数f的一阶偏导数,求出所有的驻点。 2. 对于每个驻点,计算Hessian矩阵。 3. 判断Hessian矩阵的正定性(positive definite)、负定性(negative definite)、不定性(indefinite)或者半定性(positive semi-definitenegative semi-definite)。 - 如果Hessian矩阵在驻点处是正定的,则该点为函数的极小值点; - 如果Hessian矩阵在驻点处是负定的,则该点为函数的极大值点; - 如果Hessian矩阵在驻点处是不定的,则该点既不是极小值点也不是极大值点; - 如果Hessian矩阵在驻点处是半定的,则需要进一步分析。 4. 进一步分析半定性的情况。 - 如果Hessian矩阵在驻点处是半正定的,则该点可能是函数的极小值点,也可能是鞍点; - 如果Hessian矩阵在驻点处是半负定的,则该点可能是函数的极大值点,也可能是鞍点; - 如果Hessian矩阵在驻点处即半正定又半负定,则该点既可能是函数的极小值点又可能是极大值点。 通过以上步骤,我们可以利用Hessian矩阵来判断多元函数的驻点的极值类型,从而找到函数极值点。需要注意的是,Hessian矩阵为对称矩阵,而且其元素的值与函数的表达式有关,要根据具体问题进行计算,以得到准确的极值判定结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值