1.斯托克斯公式
1.1 五个小栗子
笔记来源:Stokes’ theorem intuition | Multivariable Calculus | Khan Academy
列举五个小栗子,从直观上感受曲线积分与旋度的联系
计算向量场中的曲线积分时,我们只关注起点在曲线上的向量,这些向量沿着曲线做功的多少就是曲线积分的值
计算某点的旋度时,我们只关注某点附近的向量
第一个小栗子
第二个小栗子
第三个小栗子
第四个小栗子
第五个小栗子
从上面五个小栗子中我们观察到某种联系:
曲线积分的值小,其曲面上旋度的积分就小
曲线积分的值大,其曲面上旋度的积分就大
从而对上述曲线积分、曲面上旋度积分分别进行计算验证,观察是否存在数值上的联系,即证明斯托克斯公式
1.2 格林公式和斯托克斯公式的联系
笔记来源:Green’s and Stokes’ theorem relationship | Multivariable Calculus | Khan Academy
格林公式用于二维
斯托克斯公式用于三维,也可用于二维(即格林公式)
1.2 证明斯托克斯公式
笔记来源:Stokes’ theorem proof part 1 | Multivariable Calculus | Khan Academy
首先计算 stoke’s 公式的右侧
其次计算 stoke’s 公式的左侧
笔记来源:Stokes’ theorem proof part 4 | Multivariable Calculus | Khan Academy
重点在这一张图
对比stoke‘s分别计算左侧和计算右侧的结果
左侧结果
右侧结果
比对后结果一致,证毕