斯托克斯公式证明

本文通过五个实例展示了斯托克斯公式如何连接曲线积分与旋度,阐述了曲线积分的值与曲面上旋度积分的大小关系。同时,探讨了格林公式与斯托克斯公式在二维和三维空间的应用,并分步骤证明了斯托克斯公式,揭示了两者之间的数学联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.斯托克斯公式

1.1 五个小栗子

笔记来源:Stokes’ theorem intuition | Multivariable Calculus | Khan Academy

列举五个小栗子,从直观上感受曲线积分与旋度的联系

计算向量场中的曲线积分时,我们只关注起点在曲线上的向量,这些向量沿着曲线做功的多少就是曲线积分的值

计算某点的旋度时,我们只关注某点附近的向量

第一个小栗子

第二个小栗子

第三个小栗子

第四个小栗子

第五个小栗子

从上面五个小栗子中我们观察到某种联系:
曲线积分的值小,其曲面上旋度的积分就小
曲线积分的值大,其曲面上旋度的积分就大
从而对上述曲线积分、曲面上旋度积分分别进行计算验证,观察是否存在数值上的联系,即证明斯托克斯公式

1.2 格林公式和斯托克斯公式的联系

笔记来源:Green’s and Stokes’ theorem relationship | Multivariable Calculus | Khan Academy
格林公式用于二维
斯托克斯公式用于三维,也可用于二维(即格林公式)

1.2 证明斯托克斯公式

笔记来源:Stokes’ theorem proof part 1 | Multivariable Calculus | Khan Academy

首先计算 stoke’s 公式的右侧


其次计算 stoke’s 公式的左侧

笔记来源:Stokes’ theorem proof part 4 | Multivariable Calculus | Khan Academy



重点在这一张图




对比stoke‘s分别计算左侧和计算右侧的结果
左侧结果

右侧结果

比对后结果一致,证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值