微分定义
自变量在点
x
x
x 处的改变量
Δ
x
\Delta x
Δx 函数
y
=
f
(
x
)
y=f(x)
y=f(x) 的相应改变量
Δ
y
\Delta y
Δy可以表示为
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
(
Δ
x
→
0
)
\Delta y=A\Delta x+o(\Delta x)(\Delta x\rightarrow 0)
Δy=AΔx+o(Δx)(Δx→0)
A
Δ
x
A\Delta x
AΔx 为
Δ
y
\Delta y
Δy 的线性主部,即为函数
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
x
x 处的微分,记作:
d
y
=
A
Δ
x
=
f
′
(
x
)
d
x
dy=A\Delta x=f'(x)dx
dy=AΔx=f′(x)dx
微分dy与改变量Δy的关系
当 Δ x → 0 \Delta x \rightarrow 0 Δx→0 时,自变量改变量 Δ x \Delta x Δx、 微分 Δ y \Delta y Δy、函数改变量 d y dy dy 有下述关系
一、当 Δ x → 0 \Delta x \rightarrow 0 Δx→0 时, Δ y − d y \Delta y - dy Δy−dy 是一个比 Δ x \Delta x Δx 高阶的无穷小量
意思是:
Δ
y
−
d
y
\Delta y - dy
Δy−dy 【M’T】趋于0的速度
>
>
>
Δ
x
\Delta x
Δx【MN】 趋于0的速度
即分子趋于0的速度大于分母趋于0的速度
lim
Δ
x
→
0
Δ
y
−
d
y
Δ
x
=
lim
Δ
x
→
0
Δ
y
−
A
Δ
x
Δ
x
=
0
\lim_{\Delta x \rightarrow 0}\frac{\Delta y - dy}{\Delta x}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y - A\Delta x}{\Delta x}=0
Δx→0limΔxΔy−dy=Δx→0limΔxΔy−AΔx=0
二、当
A
=
f
′
(
x
)
≠
0
A=f'(x)\neq0
A=f′(x)=0 时,微分
d
y
dy
dy 与函数改变量
Δ
y
\Delta y
Δy 的差是一个比
Δ
y
\Delta y
Δy 高阶的无穷小量
意思是:
Δ
y
−
d
y
\Delta y - dy
Δy−dy 【M’T】趋于0的速度
>
>
>
Δ
y
\Delta y
Δy【M’N】 趋于0的速度
即分子趋于0的速度大于分母趋于0的速度
lim
Δ
x
→
0
Δ
y
−
d
y
Δ
y
=
lim
Δ
x
→
0
o
(
Δ
x
)
A
Δ
x
+
o
(
Δ
x
)
=
lim
Δ
x
→
0
1
A
[
Δ
x
/
o
(
Δ
x
)
]
+
1
=
0
\lim_{\Delta x \rightarrow 0}\frac{\Delta y - dy}{\Delta y}=\lim_{\Delta x \rightarrow 0}\frac{o(\Delta x)}{A\Delta x+o(\Delta x)}=\lim_{\Delta x \rightarrow 0}\frac{1}{A[\Delta x/o(\Delta x)]+1}=0
Δx→0limΔyΔy−dy=Δx→0limAΔx+o(Δx)o(Δx)=Δx→0limA[Δx/o(Δx)]+11=0
三、当
A
=
f
′
(
x
)
≠
0
A=f'(x)\neq0
A=f′(x)=0 时,
d
y
=
A
Δ
x
dy=A\Delta x
dy=AΔx 与
Δ
y
\Delta y
Δy 是等价无穷小量
意思是:
d
y
dy
dy 【TN】趋于0的速度
=
=
=
Δ
y
\Delta y
Δy【M’N】 趋于0的速度
即分子趋于0的速度
=
=
= 分母趋于0的速度
lim
Δ
x
→
0
Δ
y
d
y
=
lim
Δ
x
→
0
A
Δ
x
+
o
(
Δ
x
)
A
Δ
x
=
1
+
0
=
1
\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{dy}=\lim_{\Delta x \rightarrow 0}\frac{A\Delta x+o(\Delta x)}{A\Delta x}=1+0=1
Δx→0limdyΔy=Δx→0limAΔxAΔx+o(Δx)=1+0=1
四、当
A
=
f
′
(
x
)
≠
0
A=f'(x)\neq0
A=f′(x)=0 时,
d
y
=
A
Δ
x
dy=A\Delta x
dy=AΔx 与
Δ
x
\Delta x
Δx 是同阶无穷小量
意思是:
d
y
dy
dy 【TN】趋于0的速度 是
Δ
x
\Delta x
Δx【MN】 趋于0的速度的A倍
即分子趋于0的速度
=
=
= A×分母趋于0的速度
lim
Δ
x
→
0
d
y
Δ
x
=
lim
Δ
x
→
0
A
Δ
x
Δ
x
=
A
≠
0
\lim_{\Delta x \rightarrow 0}\frac{dy}{\Delta x}=\lim_{\Delta x \rightarrow 0}\frac{A\Delta x}{\Delta x}=A\neq 0
Δx→0limΔxdy=Δx→0limΔxAΔx=A=0