微分dy与改变量Δy的关系【动画理解】

本文详细介绍了微分的定义,指出当Δx趋近于0时,Δy与dy之间的关系。微分dy是函数y=f(x)在某点的瞬时变化率,当A=f'(x)≠0时,dy与Δy是等价无穷小量,且dy与Δx是同阶无穷小量。此外,还阐述了dy与Δy及Δx的高阶无穷小量关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分定义


自变量在点 x x x 处的改变量 Δ x \Delta x Δx 函数 y = f ( x ) y=f(x) y=f(x) 的相应改变量 Δ y \Delta y Δy可以表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) \Delta y=A\Delta x+o(\Delta x)(\Delta x\rightarrow 0) Δy=AΔx+o(Δx)(Δx0)
A Δ x A\Delta x AΔx Δ y \Delta y Δy 的线性主部,即为函数 y = f ( x ) y=f(x) y=f(x)在点 x x x 处的微分,记作:
d y = A Δ x = f ′ ( x ) d x dy=A\Delta x=f'(x)dx dy=AΔx=f(x)dx

微分dy与改变量Δy的关系

Δ x → 0 \Delta x \rightarrow 0 Δx0 时,自变量改变量 Δ x \Delta x Δx、 微分 Δ y \Delta y Δy、函数改变量 d y dy dy 有下述关系

一、当 Δ x → 0 \Delta x \rightarrow 0 Δx0 时, Δ y − d y \Delta y - dy Δydy 是一个比 Δ x \Delta x Δx 高阶的无穷小量

意思是: Δ y − d y \Delta y - dy Δydy 【M’T】趋于0的速度 > > > Δ x \Delta x Δx【MN】 趋于0的速度
即分子趋于0的速度大于分母趋于0的速度
lim ⁡ Δ x → 0 Δ y − d y Δ x = lim ⁡ Δ x → 0 Δ y − A Δ x Δ x = 0 \lim_{\Delta x \rightarrow 0}\frac{\Delta y - dy}{\Delta x}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y - A\Delta x}{\Delta x}=0 Δx0limΔxΔydy=Δx0limΔxΔyAΔx=0


二、当 A = f ′ ( x ) ≠ 0 A=f'(x)\neq0 A=f(x)=0 时,微分 d y dy dy 与函数改变量 Δ y \Delta y Δy 的差是一个比 Δ y \Delta y Δy 高阶的无穷小量

意思是: Δ y − d y \Delta y - dy Δydy 【M’T】趋于0的速度 > > > Δ y \Delta y Δy【M’N】 趋于0的速度
即分子趋于0的速度大于分母趋于0的速度
lim ⁡ Δ x → 0 Δ y − d y Δ y = lim ⁡ Δ x → 0 o ( Δ x ) A Δ x + o ( Δ x ) = lim ⁡ Δ x → 0 1 A [ Δ x / o ( Δ x ) ] + 1 = 0 \lim_{\Delta x \rightarrow 0}\frac{\Delta y - dy}{\Delta y}=\lim_{\Delta x \rightarrow 0}\frac{o(\Delta x)}{A\Delta x+o(\Delta x)}=\lim_{\Delta x \rightarrow 0}\frac{1}{A[\Delta x/o(\Delta x)]+1}=0 Δx0limΔyΔydy=Δx0limAΔx+o(Δx)o(Δx)=Δx0limA[Δx/o(Δx)]+11=0

三、当 A = f ′ ( x ) ≠ 0 A=f'(x)\neq0 A=f(x)=0 时, d y = A Δ x dy=A\Delta x dy=AΔx Δ y \Delta y Δy 是等价无穷小量

意思是: d y dy dy 【TN】趋于0的速度 = = = Δ y \Delta y Δy【M’N】 趋于0的速度
即分子趋于0的速度 = = = 分母趋于0的速度
lim ⁡ Δ x → 0 Δ y d y = lim ⁡ Δ x → 0 A Δ x + o ( Δ x ) A Δ x = 1 + 0 = 1 \lim_{\Delta x \rightarrow 0}\frac{\Delta y}{dy}=\lim_{\Delta x \rightarrow 0}\frac{A\Delta x+o(\Delta x)}{A\Delta x}=1+0=1 Δx0limdyΔy=Δx0limAΔxAΔx+o(Δx)=1+0=1


四、当 A = f ′ ( x ) ≠ 0 A=f'(x)\neq0 A=f(x)=0 时, d y = A Δ x dy=A\Delta x dy=AΔx Δ x \Delta x Δx 是同阶无穷小量

意思是: d y dy dy 【TN】趋于0的速度 是 Δ x \Delta x Δx【MN】 趋于0的速度的A倍
即分子趋于0的速度 = = = A×分母趋于0的速度
lim ⁡ Δ x → 0 d y Δ x = lim ⁡ Δ x → 0 A Δ x Δ x = A ≠ 0 \lim_{\Delta x \rightarrow 0}\frac{dy}{\Delta x}=\lim_{\Delta x \rightarrow 0}\frac{A\Delta x}{\Delta x}=A\neq 0 Δx0limΔxdy=Δx0limΔxAΔx=A=0

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值