不定积分(原函数)存在性定理、定积分存在性定理、变限积分存在性定理

1.不定积分(原函数)存在性定理、定积分存在性定理、变限积分存在性定理

笔记来源:
1.10个命题搞懂可积和原函数存在
2.考研变限积分概念超详细,超通俗讲解(变限积分和原函数关系)

声明:本文截图主要来自bili@心一学长、知乎@煜神学长,仅用于学习参考

1.1 不定积分(原函数)存在性定理


无论开区间还是闭区间,只要 f ( x ) f(x) f(x)连续,则一定有原函数,原函数一定可导
f ( x ) f(x) f(x)有第一类间断点(可去间断点、跳跃间断点)时一定没有原函数
f ( x ) f(x) f(x)有第二类间断点中的无穷间断点时一定没有原函数
f ( x ) f(x) f(x)有第二类间断点中的振荡间断点时可能有原函数

f ( x ) f(x) f(x)有跳跃间断点时一定没有原函数
证明:
假设 f ( x ) f(x) f(x) x 0 ∈ I x_0\in I x0I上有跳跃间断点且 f ( x ) f(x) f(x) I I I上有原函数,即对 ∀ x ∈ I \forall x\in I xI 都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),又由于 F ( x ) F(x) F(x) I I I上可导,所以 F ( x ) F(x) F(x) I I I上连续
lim ⁡ x → x 0 + f ( x ) = A 1   lim ⁡ x → x 0 − f ( x ) = A 2   由于 x 0 为跳跃间断点,故 A 1 ≠ A 2   F + ′ ( x 0 ) = lim ⁡ x → x 0 + F ( x ) − F ( x 0 ) x − x 0 = lim ⁡ x → x 0 + F ′ ( x ) = lim ⁡ x → x 0 + f ( x ) = A 1 (洛必达)   F − ′ ( x 0 ) = lim ⁡ x → x 0 − F ( x ) − F ( x 0 ) x − x 0 = lim ⁡ x → x 0 − F ′ ( x ) = lim ⁡ x → x 0 − f ( x ) = A 2 (洛必达)   由于 A 1 ≠ A 2 ,故 F ′ ( x 0 ) 不存在,与假设可导矛盾,故 f ( x ) 在 I 不存在原函数 \lim\limits_{x\rightarrow x_0^+}f(x)=A_1\\ ~\\ \lim\limits_{x\rightarrow x_0^-}f(x)=A_2\\ ~\\ \text{由于}x_0\text{为跳跃间断点,故}A_1\neq A_2\\ ~\\ F'_+(x_0)=\lim\limits_{x\rightarrow x_0^+}\frac{F(x)-F(x_0)}{x-x_0}=\lim\limits_{x\rightarrow x_0^+}F'(x)=\lim\limits_{x\rightarrow x_0^+}f(x)=A_1(\text{洛必达})\\ ~\\ F'_-(x_0)=\lim\limits_{x\rightarrow x_0^-}\frac{F(x)-F(x_0)}{x-x_0}=\lim\limits_{x\rightarrow x_0^-}F'(x)=\lim\limits_{x\rightarrow x_0^-}f(x)=A_2(\text{洛必达})\\ ~\\ \text{由于}A_1\neq A_2,\text{故}F'(x_0)\text{不存在,与假设可导矛盾,故}f(x)\text{在}I\text{不存在原函数} xx0+limf(x)=A1 xx0limf(x)=A2 由于x0为跳跃间断点,故A1=A2 F+(x0)=xx0+limxx0F(x)F(x0)=xx0+limF(x)=xx0+limf(x)=A1洛必达 F(x0)=xx0limxx0F(x)F(x0)=xx0limF(x)=xx0limf(x)=A2洛必达 由于A1=A2F(x0)不存在,与假设可导矛盾,故f(x)I不存在原函数

1.2 定积分存在性定理

f ( x ) f(x) f(x)必须在闭区间上连续

定积分存在就等价于面积存在


即便原函数 f ( x ) f(x) f(x)存在第一类间断点(可去间断点、跳跃间断点)其定积分仍存在,也就是其面积仍存在。因为某一条线与 x x x轴围成的面积为0,所以第一类间断点并不影响总体面积大小。

1.3 变限积分存在性定理

∫ a b f ( t ) d t \int_{a}^{b}f(t)dt abf(t)dt 中的 b b b x x x 代替,且 x ∈ [ a , b ] x\in[a,b] x[a,b]上变动,则 ∫ a x f ( t ) d t \int_{a}^{x}f(t)dt axf(t)dt变成了一个函数(以 x x x为自变量)将其称为变限积分,记作
F ( x ) = ∫ a x f ( t ) d t   x ∈ [ a , b ] F(x)=\int_{a}^{x}f(t)dt\ x\in[a,b] F(x)=axf(t)dt x[a,b]

f ( x ) f(x) f(x)在闭区间 ′ [ a , b ] '[a,b] [a,b]上可积,则 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x}f(t)dt F(x)=axf(t)dt在闭区间 ′ [ a , b ] '[a,b] [a,b]上连续
什么情况下函数 f ( x ) f(x) f(x)可积?
情况一:函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续
情况二:函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上有界且有有限个间断点
定积分的存在性与变限积分的存在性是一回事,都要求 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上可积,即有界且有有限个间断点

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x}f(t)dt F(x)=axf(t)dt在闭区间 [ a , b ] [a,b] [a,b]上可导且 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
证明:
F ′ ( x ) = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x = lim ⁡ Δ x → 0 ∫ a x + Δ x f ( t ) d t − ∫ a x f ( t ) d t Δ x   F ′ ( x ) = lim ⁡ Δ x → 0 ∫ x x + Δ x f ( t ) d t Δ x = lim ⁡ Δ x → 0 f ( ϵ ) Δ x Δ x = f ( x )  【 ϵ ∈ ( x , x + Δ x ) 】积分中值定理 F'(x)=\lim\limits_{\Delta x\rightarrow0}\frac{F(x+\Delta x)-F(x)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{\int^{x+\Delta x}_af(t)dt-\int_{a}^{x}f(t)dt}{\Delta x}\\ ~\\ F'(x)=\lim\limits_{\Delta x\rightarrow0}\frac{\int^{x+\Delta x}_xf(t)dt}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{f(\epsilon)\Delta x}{\Delta x}=f(x)\ 【\epsilon\in(x,x+\Delta x)】\text{积分中值定理} F(x)=Δx0limΔxF(x+Δx)F(x)=Δx0limΔxax+Δxf(t)dtaxf(t)dt F(x)=Δx0limΔxxx+Δxf(t)dt=Δx0limΔxf(ϵ)Δx=f(x) ϵ(x,x+Δx)积分中值定理

1.4 小结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值